

Free Replacement M you purchase AppM or manual* lh«] ha*« phyecal i>*l«n Qr H» if

you damage Ihem youra*" Appla mil replace Pwrti el no rail 10 jtm Tnt* uner a
good (Of two ywf^ Jlfl*r me Id8fdate»Mr1 Apple COrtllnuee to»aQ Thai pfuoxtct10 rtt

rltwter* See your >ocaJ auevrtrort Appc oeeJer *ur aeia>U about tae Apple Madia
Exchange Praojam

Limitation on
Warranties and Liability

Copyright

Even iteugft Apple n.** *rj-4tod If** m«ka arid aprrewe nfnJ nea rpvs**3 TheW

BflMrtft nedhai AcqMnc* mote anywWTAniy iv renreeentaftcvv effnar

nipftnor imp**on, **tn tj^vc! lotha mani*ai or &oHww*, th»r quaUV pertc*tnanc*
H

mo*tftrinia&ihry. or f«nm lor any pareeular purpo«a As a r«oflt ihia manual and
ftoffcrot* ar rj socl ^ la,' andyoutha purchaserare assuming the enare rta*< as to

iha# quairy ami performance Jn 110 even* w4 Acpet or % tuppfe*! w» We tor

direct mtfieci. »nrjder*aJ. tr* DJn*eque*ibel damage* ret-ufflng from any detect ffi

Vie manual even *' ffiey nave feeen aavaeo ot e» poe&bitry trf men aemege*
j peOKuiar. ineyane* have notiastUy tor any rpograrnftor oMraedtnoruaed

Affile [»cdutfs *ic»ud*>{j me cost*o! recovering or reprociuang ttie*o prrrgrant

oi dale

TNimanual and In* acctropanyrig*otfi*ar* <computer program*)areeopyngnied
Dy AW* f> trf Apple t &upph*nl. au nc/itt rofrofvao Underaiacopyix^i j*i
tntn marviar and RonnarDmay noi p«toped. *n whole or inpart without ihe*rftian

oonaam of Apple, evoapi n the normal u*e ol ne aofrarare or Id mafco a tecaup
copy Thit •itapticn does <vrt ali3Wcopei ko C* made tar otnare *h«rthei ty not aoitl

but al*ol me mater purchased fwtlhai becit<) uipw» may oeeucl. given, at lent

10anotherperson Unoartna tow. copying incudes translative; trap araihar Lurejtavje

Wxi may uae me oottwjue on anycomtneorowned byyou, bui e*tra cuptMCanrcrf

oemadefo* ihapurpoee For jom« p*odixrU
h
a mvHH>5*i*ceo*e tnay puf<^a»er3

to atow the tofwaie lo Da ueed on mora than one compute' pMaMlDyina purcnaeer.
mduoVMja tfiared-rjlsi* eJflM Ctntara yw auflhereo A£»p^o»a*at h> *ntf *rwm
on mulpAiae r

"
C Logo Cornputer Sydema Inc

,
IMJ. 196a

9960 Coaj de Uaabtt
LacnJoft. Oueoec
HBT-tAl

C Apple Cumputar Inc 1084mm M*nan* /Wan^
Cupertino, CeMrjmla BGOU

Apple theApp«tcqo and ProOOS arerogislorad U«demv^i erf Apc^eCompuetf , mC
Simullanaou*V publfanad m the UnH&d Stale* and Canada- Al ngtes teeen/ed

RcM^rdcr Appre Product *A2L4033

List of Figures and Tables xw

Preface About This Manual xix

xim How to Use This Manual
wU Visual Cues

Chapter 1 Introduction

3 What You Need
4 Getting He*p From Logo
5 Typing Logo Instructions

6 How Primitives Are DescnDed

Chapter 2 Logo Grammar
Procedures

Punctuation and Inputs to Procedures
Commands and Operations

Variables

Global and Local Variables

Understanding a Logo Line

11

11
13
14
15
18
17

Chapter 3 Defining Procedures With TO 21

21 TO
22 END

TaWe of Contents

Chapter 4 Using the Logo Editor 26
26 How me Eddor Works

28 Editing Procedures With EDIT

29 Typing and Editing in the Editor

29 Mo^ng the Cursor

30 Inserting and Deleting Text

31 Getting Out ol the Editor

21 Other Ways (o Start Up the Editor

I Chapter 5 Turtle Graphics 35
36 Changing the Turtle's State

36 BACK
37 CLEARSCREEN
37 FORWARD
38 HIDETURTLE
38 HOME
38 LEFT
39 RIGHT
40 SETHEADING
40 SETPOS
41 SETX
41 SETY
42 SHOWTURTLE
42 Getting Information About the Turtle 5 State

43 HEADING
43 POS
44 SHOWNP
45 TOWARDS
45 XCOR
46 VCOR
47 Using tne Pen and Screen

47 CLEAN
47 DOT
48 FENCE
48 FILL

49 PENDOWN
50 PENERASE
50 PENREVERSE
51 PENUP
52 SETBG
52 5ETPC
53 WINDOW

171 I able o' Contents

53 WRAP
54 Getting Information About me Pen end Screen

54 BACKGROUND
54 DOTP
54 PEN
55 PENCOLOR

I Chapter 6 Text and Screen Commands 59

60 Primitives Affecting Text on the Screen

60 CLEARTEXT
60 CURSOR
61 FULLSCREEN
61 SETCURSOR
62 SETWIDTH
63 SPLIT5CREEN
63 TEXTSCREEN
63 WIDTH
63 Special Control Characters Thai Change Screen

Use
63 CONTROL-L
64 CONTROL-S
64 CONTROL-T

Chapter 7 Words and Lists 67

67 Wofds. Some General Information

68 Lists: Some General Information

60 Breaking Words and Lists Into Pieces

70 BUTFIRST
71 BUTLAST
71 FIRST
73 ITEM
73 LAST
74 MEMBER
75 Putting Words and Lists Together

76 FPUT
77 LIST

77 LPUT
76 PARSE
7a SENTENCE
80 WORD
81 Examining Words and Lists

Table of Conienib

at ascii

82 BEFOREP
83 CHAR
85 COUNT
66 EMPTYP
67 EQUALP
88 LISTP
88 MEMBERP
89 NUMBERP
90 WORDP
•0 Changing the Case ot Words
90 LOWERCASE
91 UPPERCASE

Chapter 8 Variables 95
95 Vanadles Some General Information

96 EON
97 EONS
98 LOCAL
99 MAKE
100 NAME
101 NAMEP
101 THING

Chapter 9 Arithmetic Operations 105
105 Arithmetic Operations: Some General

Information

107 How Logo Evaluates Math Operations

108 Prehx-Form Operations

106 ARCTAN
109 COS
109 DIFFERENCE
110 FORM
111 INT

112 INTQUOTIENT
112 PRODUCT
113 QUOTIENT
113 RANDOM
114 REMAINDER
115 RERANDOM
116 ROUND

TaWe ot Content

116 SIN

117 SQRT
117 SUM
118 Inflx-Fofm Operations

119 Plus Sign

119 Minus Sign

120 Multiplication Sign

121 Division S*gn

121 Less Than Sign

122 Equal Sign

122 Greater Then S*gn

I Chapter 10 Conditionals and Flow 125
of Control

125 Row of Control: Some General Information

126 Usmg Conditionals

126 IF

127 IFFALSE
128 I FT RUE
128 TEST
129 Interrupting Procedures

130 CO
130 OUTPUT
131 PAUSE
132 STOP
132 WAIT
133 Transferring Control and Repeating Instructions

133 CATCH
135 ERROR
136 GO
137 LABEL
137 REPEAT
136 RUN
140 THROW
140 Debugging Programs
141 STEP
141 TRACE
143 UNSTEP
143 UNTRACE
144 Special Control Characters

144 OPEN APPLE-ESC
144 CONTROL-W
144 CONTROL-2

Table of Content!

Chapter 11 Modifying Procedures
Under Program Control

147

148 COPYDEF
146 DEFINE
150 DEFINEDP
150 PRIMITIVE?
151 TEXT

Chapter 12 Logical Operations 157
158 AND
159 NOT
160 OR

Chapter 13 The Outside World 163
163 Using Paddies
163 BUTTONP
164 PADDLE
164 Making Logo Read information

164 KEYP
165 READCHAR
166 READCHARS
167 READUST
167 HEADWORD
166 Making Logo Write Information

169 PRINT
170 SHOW
170 TYPE
171 Making Sounds With TOOT

Chapter 14 Managing Your Workspace 175
176 Sizing Up Your Workspace
176 NODES
177 RECYCLE
177 Printing From the Workspace
177 PO
178 POALL
178 PON
179 PONS

labte of Contents

179 POPS
180 POT
180 POTS
180 Erasing From the Workspace
181 ERALL
181 ERASE
181 ERN
181 ERNS
182 ERPS
182 Cleaning anrj Organizing the Workspace
182 BURY
182 8URYALL
183 BURYNAME
184 UNBURY
184 UNBURYALL
185 UNBURYNAME

I Chapter 15 General Fife Management 189
189 Logo's File System: Some General Information

189 What Is a Fhr
190 Disk Formatting and Volume Names
190 Disk Organization

192 Accessing Files

194 General File System Primitives

194 CATALOG
195 CREATEOIR
196 EDITFILE

196 ERASEFILE
196 FILEP
197 LOADHELP
197 ONLINE
198 POFILE
198 PREFIX
199 RENAME
199 SETPREFIX

B Chapter 16 Managing Various Files 205
206 Working Wrth Program Files

206 LOAD
206 SAVE
207 SAVEL

Table of Contents

207 Working With Picture Files

208 LOAOPIC
208 PRJNTPIC
208 SAVEPIC
209 Working With DrlDble Files

209 DRIBBLE
210 NODRIBBLE
209 Working Wilh Data Fifes

211 Reading and Writing information

211 Opening Files

212 ALLOPEN
212 CLOSE
213 CLOSEALL
214 FILELEN
215 OPEN
216 READER
217 READPOS
216 SETREAD
219 SETREADPOS
219 SETWRfTE
220 SETWRITEPOS
221 WRITEPOS
221 WRITER
221 A Sample Project Using the Data File System
222 Step 1: Creating a Data File

224 Step 2: Retrieving Information

225 Step 3 Changing Information

Chapter 17 Property Lists 229
229 Using Property Lists To Keep Records

230 ERPROPS
230 GPROP
231 PLIST

232 PPROP
232 PPS
233 REMPBOP

Chapter 18 Special Primitives 237
236 Assemwy*Language Primitives

236 Some Specifics About the Apple's Memory
241 AUXDEPOSIT

Table of Contents

242 AUXEXAMINE
242 BLOAD
242 BSAVE
242 CALL
242 DEPOSIT
243 EXAMINE
243 Special Graphics Primitives

243 SCRUNCH
243 SETSCRUNCH
243 Miscellaneous Primitives

243 CONTENTS
245 QUIT

Appendix A Messages 251

Appendix B Useful Tools 255
255 Graphics TOWS
255 AHCR and ARCL
256 CIRCLER ar«J CIRCLE!.

256 POLY
257 Math Tools

257 ABS
257 CONVERT
23Q PIVISQRP
255 LOG
258 LN
259 PWR
260 EXP
280 Program Logic or Debugging Tools

281 COMMENT
261 FOREVER
261 MAP
262 SORT ontl SUPERSORT
262 WHILE
262 Tools (or the Young Logo Use
262 DRIVE
263 TEACH

Table of Contents

I Appendix C Startup Files 267
257 Creating a STARTUP File

258 A Note of Caution Before You Stan

2W The STARTUP Variable

Appendix D Memory Space 271
271 How Space is Allocated

272 Some Hints tor Saving Space

Appendix E Parsing 275
270 Delimiters and Spoong
270 Infrv Procedures

277 Brackets and Parentheses

277 Quotation Marks and Delimiters

278 The Minus Sign

Appendix F ASCII Character Codes 281

Appendix G Summary of Logo Primitives 285

Appendix H Using a Printer With Logo 299
300 The Software

301 The Computer
303 The Printer

Glossary 307

Index 315

Table of Contents

Preface About This Manual xxii

xxil Figure P-1 .
Sample Logo Screen

Chapter 1 introduction 3

5 Table 1-1 Keystrokes for Typing

and Editing

7 Table t-2 input Words

Chapter 13 The Outside World 163

172 Table 13-1 Note Frequencies tor TOOT

Chapter 15 Genera/ File Management 189
192 Figure 15-1 Files and Subdirectories

on a Volume

Chapter 18 Special Primitives 237
239 Figure 1M. Map of Main Memocy Bank

240 F>gure Map ot Auxiliary Memory
Bank

240 Table 18-1 Special Memory Locations

Appendix A Messages 251

251 Table A-1 Logo Messages

List ot Figures and Tables

Appendix F ASCII Character Codes 281
2B2 TabtefM ASCII Codes for Normal

Characters

283 Tabte F-2. ASCII Codes for inverse

Characters

Appendix H Using a Printer With Logo 299
299 Table H-1. Printer Problems and

Causes

Ust of Figures and Tabtes

This manual describes in detail how 1o use Apple Logo II and is

intended for reference purposes The accompanying manual
Apple Logo H An Introduction to Programming, introduces you
to the more tundamentai features of Logo and is intended as a
guide ia becoming familiar with Logo

Thrs reference manual offers concise descriptions of each of

the pflmittves In the Logo language* a>ong with many sample
programs (procedures!. The chapter headings itsiod In Ihe Table

ol Contents provide a handy reference to now the primitives are

organized.

How to Use This Manual

Here are some suggestions on how to proceed

The intended audience

To leam the oasics

To gel an overview of me
rules ol Logo's grammar

This manual is written ror

people who already know
something about Logo or

languages like Logo

Work through the

accompanying manual Apple

Logo It An introduction to

Programming.

Read Chapter 2. Logo
Grammar You should read the

overview oefore using this

manual

How to Use This Manual

To Una a primitive lo perform

a particular task

To find out whai a particular

primitive does

To find out more about Logo

To get quick general help from

Logo tnn

To get quick help from Logo
about a specific primitive

To fmrj out more about the

Apple He or the Apple He

To help us *mprove Mure
Apple products

Look at the chapter headings

in the Taole of Contents or at

the Apple Logo II Reference

Card Both Irst categories of

pnmitrves so you can locate a

relevant chapter

Look it up in Append* Q or in

the Index

For a definroon of a word, or

an explanation of a new term,

refer to the Glossary at the

end of this manual The Index

is also a handy means of

finding information quickly.

Hold down either (tf| or (W)
and press at Any time,

except when a procedure is

executing. You'll see a display

with lots of helpful information

Type HELP followed by the

name of the primitive you want

to know about and press

[returnX (Remember to put a

double quotation mark before

the name of the primitive.)

You II see a display listing the

•nput3 to that primitive.

the appropriate owner's

manual

if out the W Apple

form al me end of this

manual Your experience wtth

Logo will nelp us in planning

new products and manuals.

About This Manual

Visual Cues

Procedure definitions and sample interactions between you and

Logo appear in a different type loot from tne rest ot the manual.

This font represents more closely what you see on your screen

display.

Look for the fof(owing additional visual aids throughout the

manual

When you see a hyphen pining two keys. (means that you

press the Keys simultaneously. For instance,
| dKD means you

should press
f a) and fJJ at the same time in actual pracice.

you probably wilt press (4) first and then, while still holding

down | <5 I press \~>~t.

m £ wnT^^K^t^n Nott: Gray botes I** this provide helpful hints or interesting

aite*n*fn *n ttus manuoj pieces of inlormatfon-

A Warning
Boxes In tftts indicate poieouat problems or cttsasters

Visual Cues

Figure P-l shows the Logo opening screen display.

F*9vr* ^ f. S&'npv Lvov >c/tvii

Logo ftcnwts an? tho*n KM m** © 1984. Logo Computer Systems
for help

Welcome to Logo

A Note for Applo II* Owntrt: It you are using an

Apple lie. the G£| shown in the message above may appear

on your screen as a black letter A on a Mghmolored
rectangle. Whenever you see mis on your screen, It stands

forCfiJ.

About This Manual

Introduction

3 What You Need
4 Gelling HeJp From Logo
5 Typing Logo Instructions

6 How Primitives Are DescnoerJ

Chapter 1 Introduction

Logo <s o computer language that offers features for both the

novice and the experienced programmer Logo s toatures range

Irom turtle graphics, which leis you create interesting piduros

quickly and easity, to features tor list proc©s*ng and tile

management.

Thts chapter gives you

• & list of the equipment you need to use Apple Logo II

• methods of getting help Irom Logo

• rules lor typing Logo instructions

• an explanation of how Logo primitives are described

throughout this manual

What You Need

To use Appta Logo M, you must have

• otther an Apple He computer or an Apple He computer with

an Extended BO-Column Text Card and a disk drive (The

App*e He nas a butt-tl disk drive, you can use an additional

drive \i you wish, put it isn't necessary
)

• a video display device, either a video monitor or a television

set

What You Need

• the Logo dtsk, whch has the name APPLE LOGO ft

• a compatible printer (optional)

For the Apple He you can use me Apple Imagewriter lo

prim le*t and graphics You connect the printer 10 pon 1 on
the hack panel of the computer

For the Apple lie you can use the Apple Imagewriter or

the Apple Dot Malrti Pnnter. You can print text on both

printers, but you cannot pnm graphics on the Dot Matrix

Pnnter

Other compatible printers may work tor text, but not for

graphics.

Getting Help From Logo

For tnlnrmtUin on prmtiir^ sirn tt>e

owner i manual Ifrvat came wilft

your Apple

Logo provides two ways for you to get help while using It; one
gives general help information and the other gives information

about a specific Logo primitive

To get general information about Logo, press (oKQ*
Logo displays one of two possible screens, depending on
where you are when you roquest help;

e If you are at top level, the help screen has information about

lurtle graphics commands, using the Editor, defining a

procedure, and special keystrokes.

e If you are in the Logo Editor, the help screen has
information about the Editor keystrokes

Before Logo displays the help screen, Logo saves the contents

of the current screen. Then Logo displays the help screen in

40 columns You can scroll through the screen using (V) and (T),

or, by pressing
(d H e*c\ you can return to the place from

which you asked for help

To get information about a specific Logo primitive.

type HELP and the phrrvtive name, with a quotation mark
before the name Logo displays the inputs required for that

primitive

Chapter 1 Introduction

Typing Logo Instructions

Far h*l ol Hfy*iJ7L^« ushi
wnn tne logo Cd*to» we

This section describes the guidelines lor typing in uppercase

and lowercase letters and the keystrokes for communicating

with Logo from the keyooard.

Logo does not distinguish between uppercase and lowercase

letters in any words you type Thus, when typing anything Into

the computer* you need not pay anention to which case you are

using for example, it you define a procedure with the name
SQUARE then ask Logo to execute u, Logo will execute ft

regardless of what case you use tor the letters. So* SQUARE is

(he same as Square or square

Tab*e 1*1 lists the keystrokes to use with Logo at top level and
what mey do

t*hu r.#, *t*ysnm&s tor Fypmg *kj Editing

Keystroke What It Does

CD

CD

Moves the cursor left one character position.

Moves the cursor nghl one character position

IGKD

C5KD

Moves the cursor left one word.

Moves the cursor right one word.

Moves the cursor to the beginning of the

Current line

Moves the cursor to the end of the current

line.

Typing Logo Instructions Is

Keystroke

fCOHTMOi
f

j: :

(br©or
ISKD

What It Does

Erases the character lo the left of the cursor.

Erases the character under the cursor.

Erases all Lhe characters on the current lint.

Erases oil The characters from the present

cursor position to the end of the line.

Retrieves tne last line you typed or erased
"Sing icofnnOLKy),

Displays a screen o< helpful information.

From anywhere in the line,

what you (usl typed.

Logo to do

How Primitives Are Described

At the beginning of each primitive description, you will find

• the format of the primitive and its Inputs: the name of lhe
primitive, the number of inputs to the primitive* and the type

of input required All of lhe input words used are listed at

the end of this chapter

• the short form of lhe primitive. If there Is one, in parentheses

• an indication of what kind of primitive it 15: command,
operation, or infu operation

Some primitives (such as SUM| have an optional format, which
*s enclosed in parentheses This indicates that the primitive will

accept as many inputs as you wish When using mce than two

inputs with such a primitive (or, m some cases, one input), you
must always put a left parenthesis before its name and a nght

parentheses after the last input.

Table 1*2 lists lhe words used m the syntax of Logo primitives

The words represent the Kind of input a primitive needs

Chapter t introduction

Input Word

byte

character

coJornumber

|columnnumber linenumber]

degrees

distance

duration

Reld

tile

frequency

inputs

integer

list

loc

name] list)

Description

A unit a! dais used by the

computer An integer from

through 255.

Letters at the alphabet,

numbers, and punctuation

marks.

An integer from through 5

giving the color of the pen or

background.

A list of two integers giving

the position of the cursor.

Degrees ot an angle, a

number

A number.

An integer from

through 65.535.

An integer giving ihe number

o* elements in a number.

A pathname or a slot or port

number

An integer from 3

through 65.535.

Words with colons in front

Used in conjunction with TO.

An integer If you substitute a

decimal number for an integer.

Logo truncates Ihe number
and continues processing.

A lis! of words or IrStS

A location (region) ol memory

A woro naming a procedure or

a variable, of a list of names.

How Primitives Are Described rr

Input Word

number

object (oOj)

paddlenumber

pathname

precision

predicate

prefix

properly

width

word

|xcof year
|

Description

A real number or an integer

A Logo object—a word, a list,

or a number.

An integer (0* 1* 2 or 3)

specifying the paddle.

A name thai locates the path

lo a fife on a disk

An integer from through 6.

giving the number of a»gits

ahei the decimal pomt in a
real number.

An operation that gives either

the word TRUE or the word
FALSE,

A name lor a ProDOS p*eft*

gt a file on fli§K

A word.

An integer, either 40 or 80.

A sequence of characters

A list of two numbers giving

the coordinates of the turtle

Chapter t introduction

i-ogo Grammar
1 1 Procedures

13 Punctuation and Inputs to Procedures

14 Commands and Operations

15 Variables

16 Global and Local Variables

17 Understanding a Logo Line

Chapter 2: Logo Grammar

hi

Logo is a powerful and flexible programming language made up
ol butidmg btocks called procedures Some procedures are

already built into the Logo system, these are called primitives

9!ters arg Si!:n?g By ye* 91* lp foe lasi inn sriniiii*t§

are built in. there is no difference between primitives and the
procedures you define.

Procedures can construct, modify, and run other procedures.

They Obey trie rules of Logo grammar The following sections

briefly descnbe Ihese rules.

Procedures

Here cs tne definition of a procedure called WELCOME

TQ WELCOME (title line)

PRINT "HI
END

The title line afways begins with TO followed by the name of the

procedure The last line contains only the word END For

WELCOME, the mam body Is a request to run the pnmitive

PRINT

There are three ways of defining a procedure:

• By typing m its dellnilK>n at lop level (indicated by the

quesfcon mark prompt character)

• By using the Logo Editor

• By using the primrtive DEFINE

rrr

Once a procedure is defined, on© way of executing rt rs to type

its name at top Level:

''WELCOME (procedure call)

HI (result!

Another way is to call tne procedure inside the definition of

another procedure Suppose WARMWELCOME is defined like

this:

TO WARMWELCOME
WELCOME
WELCOME
WELCOME
WELCOME
WELCOME
END

When it s called. WARMWELCOME executes WELCOME five

times

*WARMWELCOME
HI
HI
HI
HI
HI

WARMWELCOME is the tuporprocedure that contains the

subprocedure WELCOME Using superprocedures and

suPprocedu'es. you can puiid structures of great complexity.

A procedure can also oe a subprocedure of rtselt. Thrs rs called

recursion You It fmd many examples of this powerful Logo
feature throughout this manual

It you ask Logo to run an undefined procedure, an error

message appears

''TALK
f DON'T KNOW HOW TO TALK

Chapter 2 Logo Grammar

I Punctuation and Inputs to Procedures

Logo interprets every word as a request to run a procedure.

You must use special characters to indicate when this Is not the

case

A word beginning with a quotation mark—lor example,
tells Logo that the word must be treated literally, not as a
proceduro call Mere* Hi is an input to the procedure PRINT.

'PRINT "HI
HI

Numbers are like literal words, but don t need quotation marks

'PR INT 5

5

A sequence ol words surrounded by square brackets indicates

a list Lists can be inputs to procedures

'PR [NT [ARE UC HAVING FUN?

]

ARE WE HAVING FUN'

The list (ARE WE HAVING FUN| * 8 literal list; Logo does not

try lo eiecute it The foaowmg eaampte illustrates this more
clearly.

'PRINT [2 * 2]
2 * 2

Without the brackets. Logo wi)J attempt to execute (he

sequence ol words

'PRINT ARE WE HAVING FUN'

I DQtt'T KMBW NOW TD m
or

'PRINT 2*2
4

Your procedures can also have inputs For example

TO GREET : NAME (title line)

PR "HI
PR : NAME
PR I HAVE A NICE DAY]
END

Punctuation and Inputs lo Procedures 1*

A word beginning with a colon (:) tells Logo that the word (5 a

variable. Variables that hold the inputs to procedures are written

on the title tine after the name of the procedure NAME is a

variable whose vaJue >s determined when GREET is called The

mam body ol GREET contains three calls of the procedure

PRINT (PR is the short form of PRINT) The second of these

calls uses the current value ol NAME

Here's an example ol a request to execute GREET at lop level

?GREET "GUY
HI
GUY
HAVE A NICE DAY

In this case, the input is the literal word GUY. Logo makes this

the value ol NAME when it executes GREET.

Commands and Operations

There are two kinds ol procedures in Logo 1 operations and

commands Operations output a value to another procedure,

commands (such as PRINT) do not.

The primitive SUM is an operation that outputs the sum of two

numeric inputs In n i
example, the output of SUM is sent to

the primitive command PRINT:

7PR I HT SUM 31 28
S9

Because an opefOtion can be used only as an input to another

procedure* every Logo line must oegm witn a command-
Otherwise, you get on error message. For example:

^SUtl 31 ZB
YOU DON'T SAY WHAT TO DO U1TH 59

Your procedures can be commands or operations. The
procedure GREET is a command. To construct operations, you
must use the primitive OUTPUT The procedure FLIP, lor

example. »s an operation;

TO FLIP
IF (RANDOM 21-0 I0UTPUT "HEADS 1

OUTPUT "TAILS
END

Chapter 2: Logo Grammar

FLIP outpuis me htefal word HEAOS *f RANDOM 2 ouipuis 0,

or TAILS if RANDOM 2 outputs 1 You can pass the output

from FLIP to PRINT:

•>PR FLIP
HEADS

Variables

5e* twUin Pi#irtuabon and
Input* io P*oo*3ur» "

You can think of a Logo variable as a container with a name
on the outside and an object (a word, list, of number) inside. A
colon m front of a word tells Logo *t <s a vanable and makes its

current value available to a procedure For example:

PRINT : JOHN

!?Hs (=999 !° !99fc !9r a ssffisrer nam§e d9MN: !! II finds en?: R

looks inside the container and makes whatever it finds available

to PRINT. PRINT then displays the contents of JOHN on the

screen

If no variable JOHN exists. Logo prints the error message:

JOHN HAS HO VALUE

You can assign a value to a variable in two ways

• By defining a procedure with inputs and then calling the

procedure with specified values.

• By using the pnmitive MAKE or NAME

MAKE requires two inputs; a word and a value

''MAKE "JOHN S5
SPRINT :J0HN
25

In this case, tne value is a number (25) However, it can be a

word or a list as well Consider this example:

MAKE MX "JOHN

Variables

Here. MAKE has two quoted words as inputs, Il puts the literal

word JOHN inside the container X. The contents of the variable

name JOHN from the previous example are undisturbed So.

SPRINT t%

JOHN
*PRINT :JOHN
25

Global and Local Variables

Variables created with MAKE remain m the workspace until

erased These vanabtes are called global variables There

are also variables trial remain m the workspace onty as Wig as

a procedure is being executed. These variables are catted local

variables Variables mat are defined as inputs to procedures

are local variables

The procedure GREET can be modified to p*mi the date

TO GREET :NAttE

PR i DATE
PR "HI
PR tNAME
PR I HAVE A NICE DAY 1

END

DATE does not appear on the title fine of GREET, so it is a

global variable You can deline the value of OATE at top level.

°P1AKE "DATE (MARCH 14 19841
7GREET "BRIAN
MARCH M 1984
HI
BRIAN
HAVE A NICE DAY

The variable NAME •$ not giooa* After GREET stops executing.

NAME no longer has any value (But DATE is still in the

workspace

)

You couW also use MAKE to define DATE inside the procedure

GREET Jl wouW Sbll remain as a global variable alter GREET
executes (The primitive LOCAL, however, lets you create local

variables inside a procedure.)

Chapter 2: Logo Grammar

I Understanding a Logo Line

A Logo tine can be longer than the lino you see on the screen.

For example;

MAKE "MANYNAME5 [MIKE BARBARA GUY JUDY >

SHARNEE EFFIE CHERYL I

The exclamation mark () indicates mot the next screen line is a

continuation of the previous screen line. A Logo line typed from

top level can contain a maximum of 125 characters (including

spaces). You end a Logo line by pressing f'wuflw ;

Here are some guidelines to help you interpret a complex Logo

line:

• The first word ot a Logo line must always be a command,

a An operation is always the input to another procedure

a Every input to a procedure must be accounted for.

• When the inputs to a command have been accounted for.

the next procedure must be another command.

Here is an example ol a complex Logo line:

PRINT SUM RAHDOM iN 100

PRINT is a command with one input, in this case the output ot

SUM SUM requires two inputs. The first <s the output of

RANDOM* which ttsetf requires one mpul (the current value ot

N(. The second input lo SUM to 100.

:N

Understanding a Logo Line

If N has been assigned Ihe value 10.

9 MAKE "H ID

Ihen tne line will print a numD&f in ine range 100 109

'PRINT SUM RANDOM ;N 100
101

Chapter 2: Logo Grammar

Defining Procedures With TO
21 TO
22 END

Chapter 3; Defining Procedures With TO

With the TO primitive, you can define your own procedures at

top tovei without disturbing what 5 on the screen This is

advantageous if you need to look at instructions you have (ust

used while entering a procedure definition.

Wto
TO name {input* input2...) (command)

TO tells Logo that you are defining a procedure called name.

with inputs (if any) as indicated From top level, the prompt

character changes from f to > to remind you that you are

defining a procedure. White you are defining a procedure, Logo

does not carry out the instructions you type; it makes them port

ol the procedure definition

Note: You need not put a quotation mark before name
because TO puts one there automatically.

To complete the procedure and return Logo to top level, type

the word END as the Last line of the procedure The special

word END must be used alone on the last line

ro

Enampto:

Inoui »o PiccBdura

Procedure Nam

EM nl ['.!.

Logo i Hnw»"Sti

'TO GREET
>PRINT [HI THERE 1

>END
GREET DEFINED

'TQ
->FD
>RT
>FD
>RT
>FD
>RT
>FD
>RT
->EHD
-SQUARE
?-

SQUARE
:SIDE
90
:5IDE
90
:SIDE
90
iSIDE
90

:5IDE

DEFINED

II you change your mind while defining a procedure with TO.
press (HrHTac"} to slop the definition. II a procedure is already
defined, you can ! change Ihe definition with TO at lop level.

You must use EDIT or erase the old definition first wilh ERASE
(EH).

END

END (Special word!

END is necessary, when you are using TO, to tell Logo that you
nave finished defining the procedure ll must be on a line by
itself You must also use END to separate procedures when
defining multiple procedures m the Logo Editor.

Chapter 3: Defining Procedures With TO

n

ft

Using the Logo Editor

21 How the Ediloc Works
28 Editing Procedures Wrlh EDFT

29 Taping and Editing In the Editor

29 Moving the Cursor

30 Inserting and Deleting Text

31 Getting Out or the Editor

31 Other Ways to Start Up the Editor

Chapter 4 Us<ng the Logo Editor

m

The Logo Editor is an mloraciive screen-onented text editor,

which provides a HexttA way to define and change Logo
instructions The ma*n command for starting up the Logo Editor

is EDIT

Thts chapter gives you

• information on how the Editor works

• the specifics of the EDIT command

• tho rules for typing and editing in the Editor

• a brief description of other ways to start up the Editor

Chapter 4: Using the Logo Editor

How the Editor Works

When you call the Editor. Logo changes the screen For

example

''EDIT "POLV

LOGO EDITOR

TO POLV rSIDE iANGLE
FD :SIDE
RT : ANGLE
POLV :SIDE : ANGLE
ENO

O-A accept, help, O-ESC cancel

There is no prompt character, but the cursor shows you where

you are typing.

Note: The POLY procedure continues executing until you
pfess (i Reset to stop It

The text that you edit is m an area of memory called a buffer

When you enter the Editor. Logo displays the text from the edit

buffer, up to 20 lines per screen.

You can move the cursor anywhere in the text using the cursor

control keys desenbod later *n this chapter You can also delete

and insert characters usjng the appropriate keys.

Chapter 4: Using the Logo Editor

Eacti key that you type makes the Editor take some action

Most typewrite* characters (tetters, numbers, punctuation, and

rfi w%
)
are simply inserted .mo ii-.y buf^v mailed

on the screen oy the cursor.

When you press ('rftuwh \t the cursor (and any teit that comes

alter it) moves to the next line, ready (or you to continue typing.

You can have more characters on a line ol text than fit across

the screen When you get to the end ol tne tine on the screen^

lust continue typing without pressing 1'n'tjijny ; An eiclamatlon

mark (') appears in the nghtmost character position on the line

and the cursor moves to the next lino

Logo does the same thing outside ol the Editor. Here is what

Ihe screen might look like

TO PRtNTMESSAGES ; PERSON
>PRIHT SENTENCE ;PERS0N t , I AM GQIHG T

!

TVPE A VERY LONG MESSAGE FOR YOU]

>PRINT SENTENCE (50 LONG 1 1 sPERSON
>END

The Editor has an auxiliary line butter called the kill buffer

You can use ii to move lines m a procedure or to repeat them

n different places. The butter can hold a maximum or

125 characters. While this Is true for the kill buffer, the length ot

a line is limited only by the length ol the edit butler |6i«)

You can use iCTwmotKTl and (HSgSxHZ) to delete a whoie

line and a partial hne ol text, respectively, and put them m the

kill buffet tTorjTnorHXJ inserts the same tine of text later at the

place marked by the cursor.

"r: ?t }

"

l .
-

l 1 lets you see temporarily triL- graphics screen ana

its most recent contents. rco^mSXJJ festores the screen bach

to the Editor so you can pick up where you left off.

When you exit from the Editor using |6Ka)* Logo reads each

line in me edit buffer as it you had typed it directly from top

level

II ihe instructions in the edit buffer define a procedure (that rs. if

there is a titie line TO* that starts the definition). Logo

behaves as though you had typed the delininon ol the

procedure using TO. It the buffer contains a procedure

definition, but there is no END instruction al the end of the

buffer, Logo helps out by ending the definition lor you

How the Editor Wcks l27~

II there are Logo Instructions on tines In me edit bulfer that are

not part ol the definition of a procedure, Logo carries them out

when you exit the Editor.

In the Editor, you may define more than one procedure at a

time When you ewt the Editor you can 90 back to your original

graphics screen.

I Editing Procedures With EDIT

EDIT (ED) (commend)
EDIT name(iistl

The EDIT command starts up the Logo Editor If you give an

input, (he Editor starts up with tne definitional of the given

procedure^) m the edit butter The input to EDfT can be a list

of procedure names instead o< a s*ngle name In this case, aw

the procedure detlniltons win be brought into the Editor

If the procedure name has not been previously defined, the edit

butter contains only the title Hne TO name. If no input 15 given,

the edit buffer has whatever H had the last time you used the

Editor, or is empty IV it Is the first time you have used the

Editor

Press
Ij Ha) to exit from the Editor and 10 have Logo read all

the bnes from the edit butter as though it weie typed at top

level H the end of the buffer is reached while there is a

procedure definition in the Editor Logo completes the

procedure definition by Inserting END.

Press f6>v3§<ri to stop editing without completing the definition

Use this key it you don't like the changes you are making or It

you decide not to make any changes

Chapter 4 Using the Logo EdHoi

Typtng and Editing in the Editor

Thts section presents the keystrokes you use when typing >n

the Editor Note that some keystrokes work both inside and

outside the Editor. These are indicated by an asterisk (*} to the

left of the keystroke.

Mote: Remember that pressing
t o.k^J whtl* ,n lh* E*

gives you a screen oi information about the editing

keystrokes

Moving the Cursor

These keystrokes move the cursor around in the indicated

ways

*Q Moves the cursor left one character position.

Moves the cursor right one character position.

(T) Moves the cursor down one line to the next

line- The cursor tries to go to the character

position directly underneath its position on the

current line If the next line is shorter than the

cursor position on the current line, the cursor

goes to the end of the next tine. If the cursor

is on the last line of the edit buffer. II does not

move.

Example:

THIS IS A TEXT LINE

THIS IS ANOTHER-TEXT LINE

A SHORTER ONE.

THIS 15 A LONGER ONE THAN CAN FIT ON TM

!

E SCREEN-

THIS 15 THE NEXT LINE

Cursor on L in LINE

Cursor on space before TEXT

Cursor at end of line

Cursor on R In LONGER

Cursor at end of hne

Cursor on T in NEXT

Typing and Editing in the Editor

T3K3
fldK3

'L4K>)or

•ODO
WKD

in k_*i

I3KD
through

CSXB

Moves the cursor up one tine to the previous

line The cursor tries to go lo me character

position directly above its position on the

current tine It the previous line ts shorter than

the cursor position on the current l*ne, the

cursor moves to the end ol the previous Ime.

Moves the cursor to the left one word.

Moves the cursor to the right one word

Move5 the cursor to the beginning ot the

current line

Moves the cursor to the end of the current

line.

Moves the cursor to the lop ot the page if Ihe

cursor is already at the top ot the page, K

moves the cursor to the top of the previous

page and displays tho new page

Moves the cursor to the bottom of ine page II

the cursor is already at tne bottom of the

page, it moves the cursor to the top of the

next page and displays the new page.

Moves the cursor to Ihe beginning of a line at

a point m the edit buffer (jJ)-Q) moves to the

start of the butter, l 6 HA) moves to tne end ot

the butter, and the others move
proportionately throughout the buffer.

Inserting and Deleting Text

These keystrokes insert and delete text in the indicated ways.

From anywhere in the line, accepts the line u
<t is displayed and moves the cursor and the

rest of Ihe line to the beginning of a new l»ne*

Erases the character to the ten of the cursor

Deletes tne character under the cuisor.

Chapter 4 Using the Logo Editor

Deletes an the characters on the current line,

up to 125 characters. Logo puts irus levl In

the kilt Outlet

Deletes N me characters from the present

cursor position to the end of the current line,

Logo puts this text in me Kill buffer

When you are inside ihe Editor
r
coNmot

inseris a copy of ihe lent that *s In Ihe kill buffer

at the current cursor posUton. When you are

outside the Editor, it retrieves the last tine

you typed, or whatever has been deleted with

Opens* a line at the present cursor position.

Getting Out of the Editor

Use these keystrokes 1o get out of the Editor.

LflXO Accepts your work and causes Logo to read

the contents of the edit Duffer as if you typed

them at top level

I'qHesc.) Discards your work Any changes you've

made ate left in the edit buffer Use it it you
don I Ikke me changes you are making or you
decide not to make changes If you were
defining a procedure the definition w*» be the

same as belore you started editing, if you

press fryHcsc"! bv accident, you can retrieve

the contents of Ihe edit buffer with me EDIT

command and no inputs.

Other Ways to Start Up the Editor

You can use three other Logo primitives besides EDIT to start

up the Logo Editor EDN. EDMS, and EDITFILE

You use EON and EDNS for editing variables EDN starts up the

Editor with the variables you indicate and lhe*r corresponding

values You can then edit these variable names and values,

EDNS starts up the Editor with all variable names and their

values m it. EDITFILE starts up the Logo Edrtor with the

contents of me Me you indicate You can then edit me hie. and
it will be saved with the same filename.

«>Jt«tx H~6~i

EDS and EOM5 «« OwcntwJ n
CnApie* 9 V

You c*n ie*0 mw aOout

EDITFILE *i CnaoVH IS. Owwai
Fife MftiugttTnaM

Other Ways to Start Up tho Editor

Turtle Graphics

36 Changing the Turtle's State

36 SACK
37 CLEARSCREEN
37 FORWARD
3a HIOETURTLE
36 HOME
30 LEFT
39 RIGHT
40 5ETHEADING
40 5ETPOS
41 SETX
41 SETY
42 SHOWTURTLE
43 Getting Information About the Turtle's Stale

43 HEADING
43 POS
44 SHOWNP
45 TOWARDS
45 XCOR
46 YCOR
47 Using the Pen and Screen

47 CLEAN
47 DOT
48 FENCE
48 FILL

4ft PENDOWN

Chapter 5 Turtle Gfapnics

50 PENERASE
50 PENREVERSE
51 PENUP
51 SETBG
52 SETPC
53 WINDOW
93 WRAP
54 Getting Information About the Pen and Screen

54 BACKGROUND
54 DOTP
54 PEN
55 PENCOLOR

Chapter 5: Turtle Graphics

FUU5CREEH SPLiTSCREEri
<nd TEXTSCREENw Oucnbrtd

Apple Logo has two Kinds of screens: me graphics screen and
the teit screen. When you use any primitive or procedure that

refers to the turtle, Logo shows you the graphics screen The
commands FULLSCREEN. SPLlTSCREEN. and TEXTSCREEN
allow you 10 switch between the two kinds of screens.

This chapter presents a complete list of the commands thai

change what you see on the graphics screen It also includes a
number of operations that give you information about the state

of the turtle, the pen. and the screen. The primitives appear in

four groups

• primitives tnal change the turtle's state

e primitives thai give you information about tne turtle's state

• primitives that tell Logo to do something with the pen or

screen

• primitives that tell you about the state of the pen or the

screen

Many of these commands are discussed in the Appfe Logo it:

An Introduction to Ptogrammmg manual This chapter assumes
that you have already read that manual

Chapter 5 Turtte Graphics

I Changing the Turtle's State

This section explains all the commands mat tell the turtle to do
something. The commands appear in this order:

BACK
CLEARSCREEN
FORWARD
HIOETURTLE
HOME
LEFT

RtGHT
SETHEADiNG
SETPOS
SETX
SETY
SHOWTURTLE

The screen limits are 240 turtle steps titgh and 280 steps wide

Hence, when using Cartesian coordinates (as in SETPOS). you

reach the edge of the screen when the y-coordmale is 119 (lop)

or *120 (bottom) and the ^-coordinate is -140 (toft edge) or 139

Inght edge) (This is true when the aspect ratio is 81 Note mat

you need not worry about these coordinates when using

FORWARD and BACK

BACK
BACK distance 1IM ..-.-.in." -r'! i

The BACK command moves Ihe turtle tftefaoce steps Back. Its

heading does not change II the pen is down. Logo draws a line

the specified distance.

BACK 70

Chapter 5: Turtle Graphics

CLEARSCREEN
CLEARSCREEN (command)

CLEARSCREEN erases mo graphics screen, puts Vie turtle tn

the center oi the screen, and sets the turtle s heading 10

inofth) The center of the screen ts position (0 0| and ts caned

the homo petition

FORWARD
FORWARD distance |FD) (command)

EOHWAHD moves the turtle forward Stefanee steps h tfts

direction m which it a heading It the pen Is down. Logo draws

a line the specified distance

Examples:

F0HWAAD 70

TO SQUARE :5JDE
REPEAT A [FORWARD :5IDE RIGHT 90)
END

50UAKi JO

Changing ihe Turtle's State

HIDETURTLE
HIDETURTLE (HT) (command)

HIDETURTLE makes the turt*e mvisita (The turtle draws faster

when o is hidden

)

HOME
HOME [command]

The HOME command moves the turtle to the center of the

screen and sets its heading to 0, if the pen ts down, Logo
draws a line to the new position The HOME command 15

equivalent to

SETPOS 10 01
SETHEADIHG

LEFT
LEFT degrees (CQflVWtfKf)

The LEFT command turns the turtle left (counterclockwise) the

specified numoer o* degrees The number of degrees must not

be greater tnan 4.I9E6.

Chapter 5; Turtle Graphics

Examples:

LEFT 45 turns the turtje 45 degrees tell

LEFT -45 turns the turtle 45 degrees right

LEFT 45 LEFT -45

The procedure POLY draws figures like those illustrated

TO POLY ;SIDE :ANGLE
FORWARD :5IDE
LEFT :ANGLE
POLY :SIDE : AMGtlE
END

POLY 70 60 POLY 30 40 Ml* M |4J

RIGHT
RIGHT degrees (RT> (command)

The RIGHT command turns the turUe right (clockwise) the

specified number at degrees. The number at degrees must not

be greater than 4.19E6

Examples:

RIGHT 45 turns the turtle 45 degrees right

RIGHT -45 turns the turtle 45 degrees left

nQHi 45 RIGHT -15

Changing the Turtle's Stale

TQ SP 1 : 5 1 DE : ANGLE : I NC
FD :SIDE RT : ANGLE
SPI r S IDE * :1NC : ANGLE i

END
INC

SPI 5 144 3

SETHEADING
SETHEADING degrees (SETH((command)

SETHEADING turns the turtle so thai It is heading rn the

direction a&gree$
t
which can be any decimal number less

than 4.19E6. Positive numbers are clockwise trom north,

negative numbers are counterclockwise from north. Note that

RIGHT and LEFT do relative motion, but SETHEADING floes

absolute mobon.

Examples:

SETHEADING 45 heads ine turtle northeast

SETHEADING -45 heads the lurtte northwest

SETPOS
SETPOS

| xcor ycor\ (command)

The SETPOS (tor set position) command moves the turtle to the

Indicated coordinates II the pen is down, Logo draws a line to

the new position

Chapter 5: Turtle Graphics

Example:

SETPDS MOO 01 moves the turtle to a po*nt halfway down
the nght edge of the screen.

SETX
SETX xcar (command)

SETX moves the turtle horuonraHy to a point wiih *-coordmate
Kcor The y-coordinate 15 unchanged If the pen is down, Logo
draws a line to the new position

Example:

SETX *50 moves the turtle horizontally over towards the left

ot the screen (The left edge of the screen is -140,)

stt* 50 set* 2 icon

SETY
SETY ycor (command)

SETY moves the turtle vertically to a point with y-coordinate

ycor The x*coordinate is unchanged. If the pen is down, Logo
draws a line to the new position.

Changing the Turtle 5 State f77

Example:

5ETY - 50 moves the turtle vertically towards the lower edge
of the screen (The lower edge of the screen is -120 when the

aspect ratio >s 9 I

strv a sctv r * vcon

SHOWTURTLE
SHOWTURTLE (ST) (command)

SHOWTURTLE makes the turtle visible

Chapter 5: Turtle Graphics

Getting Information About the Turtle's State

This section e*piorn* all the operations thai inform you about
the turtle s state The primitives appear in Hi order:

HEADING
POS
SHOWNP
TOWARDS
XCOR
YCOR

HEADING
HEADING (operation)

HEADING outputs the turtle's heading, a decimal number
greater than or equal to and less than 360 Logo follows the
compass system where north ts a heading of degrees,

easl 90. south 180. and west 270. When you start up Logo, the
turtle has a heading of (straight up)

Example:

IF HEADING - 1B0 E PR [VDU ARE HEADED DU!
E SOUTH]

)

POS
POS (operation)

POS (lor position) outputs the coordinates of the current
position of ihe turtle <n the form of a f«sl |*coi ycor|. When you
start up Logo, the turtle is at (0 0|, the center of the turtle hew.

Getting information About tne Turtle's State 143

Example;

TD GOODVEE
MAKE "SAVEPQS POS
VEE
PEHUP
SETPOS :SAVEPDS
PENDOWH
END

TO VEE
RT 135 FD 20
LT 90 FD 20
LT 45
END

a

BOODVEE

GOOUVLL calls the procedure VEE and then restores the

luMi© s position to wherever <t was before GOODVEE was
called.

SHOWNP
SHOWNP (operation)

SHOWNP outputs TRUE if Ihe lurtle ts noi hidden, FALSE
otherwise

Chapter 5 Turtle Graphics

TOWARDS
TOWARDS \xcor ycor\ (operauon)

TOWARDS outputs a heading mat would make the turtle face in

the direction indicated by \xcor ycor\.

Eiamplei

SETHE ADI NG TOWARDS 120 1] neads the turtle in the

direction ot the position |20 10|

XCOR
XCOR (operation)

XCOR outputs the i-coordinate ot the current position of the

turtle

Examples:

^ PR I NT XCQR
10*0

SETX 2 * XCOR moves the turtle horizontally to a position

twee as far from the y-axis as It used to be*

£ -A

Getting information About the Turtle's State

YCOR
YCOR (operation)

VCOR outputs the y-coordmate of the current position of ihe

turtle

Eiamplet;

''PRINT YCOR
50,0

SETY 2 1 YCOR moves the tuftlo verMaHy la a position

twee as Var from the x-axrs as ft used to be.

Chapier 5 Turtle Graphics A

I Using the Pen and Screen

This section explains ail the commands that direct Logo to do
something with the pen or screen The commands appear in

inis order:

CLEAN
DOT
FENCE
FILL

PENDOWN
PENERASE

PENREVERSE
PENUP
SET8G
SETPC
WINDOW
WRAP

CLEAN
CLEAN (command)

The CLEAN command erases the graphics screen but doesn't

afreet tne turtle

DOT
DOT \ACOr yccr\ (command)

The DOT command puts a dot of the current pen eotor at the

specified coordinates, without moving the turtle, ft does nol

draw a line, even if the pen <s down

Using the Pen and Screen f4f

Example;

DOT f 120 0] puts a dot near the right edge of the screen

FENCE
FENCE (command)

Gw atoc «-c0orn WINDOW and
WttAP

The FENCE command fences in ihe turtle within the edges ol

the screen, an error occurs and trie turtle does not move It the

turtle is already out ol bounds, Logo repositions it at its home
position |0 0).

Example;

FEHCE
CS
RT S

FD 500

gives the error message TURTLE OUT OF BOUNDS.

FILL

FILL (command)

The FILL command fills the shape outlined by the current pen

color with the current pen color. If the turtle is not enclosed, the

background is filled with the current pen color, Logo ignores

lines of colors other than the current pen color when
determining what to tilL

Chapter 5: Turtle Graphics

Example:

TO FILLAT iPOS
LOCAL "POSITION
MAKE "POSITION PD5
PU SETPOS :POS PD FILL
PU SETPOS (POSITION PD
END

This procedure moves the lurtte to a specified position, fills, and
returns the luriJa to its original poMiorv

REPEAT 4 PD FILL

PENDOWN
PENDOWN (PD) {command)

The PENDOWN command puts the turtle's pen down When we
turtle moves, it draws lines in the current pen color When you
start up Logo, the pen is down

PENDOWN FD 1

Using (he Pen and Screen

PENERASE
PENERASE (PE) (command)

PENERASE puis the turtle s eraser down. When the turrte

moves. it eras*?5 lines it passes over To take away the eraser.

use either PENDOWN orPENUP.

PENRE VERSE
PENREVERSE <PX) (command)

PENREVERSE puts the reversing pen down When the turtle

moves. It tries lo interchange the pen co*Of and background

color, drawing where there aren t lines and erasing where there

are. The exact etlecl ot (his reversal * complex; what It looks

like on the screen depends on ine pen rotor background color,

and whether linos are horizontal or vertical. The best results are

on a Wack background

Chapter 5: Turtle Graphics

PENUP
PENUP (PU) (command)

The PENUP command lifts the pen up: when the turtle moves, it

does not draw lines The turtle cannot draw until the pen is put

down again.

SETBG
SETBG cotornomtor (command)

The SETBG (for sol background) command sets the

background color \q tho color represented by cotomumber,

where cofornomber is one of the following numbers.

btacfc

1 while

2 green

3 violet

4 orange

5 t
i.*

6 black (for black-and-white TV)

Using the Pen and Screen 51

Bm sample itKbded «*tfi mc Notp that bachground colors and 6 are both black. 6 is the
BACHGROUNDComM recommended background for a black-and-white screen, since

the pen draws thinner lines with a 6 background

There are certain unavoidable limitations when you draw with a
colored pen on a colored background Black and white pens
draw successfully on any background, any cokyed pen draws
successfully on a black or white background If you try to draw
a green or violet line on an orange or blue background, or an
orange or blue line on a green or violet background, the

following will happen

orange or blue background: green becomes orange
violet becomes blue

green or violet background. orange becomes green

Hue becomes violet

tt you change ine background after you've already drawn wrth a
cotored pen, the results may bo blotchy.

SETPC
SETPC colomumDer (command)

The SETPC (for set pencolorl command sets the cotof of the
l/en lu witmv njKvnutuotrt ib utm or trie roiiowutg

numbers:

brack

1 white

2 green

3 votei

4 orange

5 M. "

Chapter 5: Turtle Graphics

:wr p#n BHd Dachgraund

ODHK wcton SCTBG m lh*

If the pen color does not look right on your screen, try adjusting

the lint control However, when two Imes ol dlHerent cotors are

horizontally close to oach other
.
one of them may be the wrong

coJor. no matter what you do

WINDOW
WINDOW (command)

5m alio section* TCNCC and
WBAP.*

The WINDOW command makes the turtle field unbounded, what

you see is a portion of the turtle tiefcJ as if looking through a

small window around the center of the screen When the turtle

moves beyond the visible bounds ol the screen, it continues to

move but can't be seen-. The screen is 240 turtle steps h*gh

(only it the scrunch factor is ,6) and 280 steps wide The entire

turtle field is 40.960 steps high and 32.768 steps wide

Changing WINDOW to FENCE or WRAP when the turtle is ott

the screen sends the turtle to its home position |0 0|

Example:

^WINDOW
''CS RT 5
^FD 500
SPRINT P05
-13-5779 49B.097

WRAP
WRAP (command)

>t* ateo vn»n» FENCE" ana
WINDOW

The WRAP command makes the turtle BHD wrap around the

edges of the screen it the turtle moves beyond one edge ol the

saeen. it continues from the opposite edge The turtle never

leaves the visible bounds of the screen; when it tries to. It

wraps around to the other s^de.

Examplti

''WRAP
''CS RT 5
*>FD 500
*PR1NT PQS
43-5779 18.0973

Using the Pen and Screen 52

Getting Information About the Pen and Screen

This section explains all Ihe operations thai inform you about

the state of the pen or screen. The pnmrtives appear in this

order:

BACKGROUND
OTP
PEN
PENCOLOR

BACKGROUND
BACKGROUND 9 (BG) (operation)

BACKGROUND outputs a number representing the color of the

background:

black

1 white

2 green

3 vKMet

4 orange

5 blue

6 black (tor black-and-while TV|

When Logo hrsi starts up. BACKGROUND outputs

DOTP
DOTP *cor ycot] (operation)

The DOTP operation outputs TRUE H there *s a dot on the

screen at ihe indicated coordinates- It there is no dot, DOTP
outputs FALSE,

PEN
PEN (operation)

PEN outputs tne current stale of the turtle's pen The states are

PENDOWN, PENERASE, PENUP and PENREVERSE When the

turtle first starts up. PEN outputs PENDOWN.

Chapter 5: Tunte Gwpnics

PENCOLOR
PENCOLOR (PC) (operation)

PENCOLOR outputs a number representing (tie current color of

the pen

black

1 while

2 green

3 violet

4 orange

5 tiiue

When Logo first starts up. PENCOLOR outputs 1

Getting Information About the Pen anrj Screen

o

Text and Screen Commands
SO Primitives Affecting Text on the Screen

60 CLEARTEXT
60 CURSOR
61 FULLSCREEN
61 SETCURSOR
62 SETWIDTH
63 SPLtTSCREEN
63 TEXTSCHEEN
63 WIDTH
63 Special Control Characters Thai Chang© Screen Use
63 CONTROL-L
64 CONTROL-S
64 CONTROL-T

Chapter 6: Text and Screen Commands

Your Apple computer has 24 lines of text on the screen, with 40
or BO characters on each fine, depending on the current screen

width setting. You can use the screen entirely for text of entirely

for graphics. The Apple also lets you use the top 20 lines for

graphics and the bottom four for text at the same time When
you stari up Logo, the entire screen is available for text.

Your screen can tie either 40 or 80 characters wxte You can
switch between the two settings with the SETWIDTH pnmitive.

Note: If you have an Apple He, Logo will be in 40-coJumn

mode when you start up.

If you have an Apple He. Logo will read the state of the

80/40-coiumn switch to determine which mode to start *n.

There are two ways to change the use of your screen

• With regular Logo commands, which you can type at fop
level or insert within procedures (FULLSCREEN,
SPLITSCREEN. TEXTSCREEN, and SETWIDTH)

• With special control characters which are read from the

keyboard and obeyed almost immediately (while a procedure
continues running); these cannot be placed withm
procedures (Cco^oPrfO, ("control KTi and f comkol VtT»

scrunch ino setscrunch In addition to those described m this chapter, the primitives
»* dttcrad m ow* ie .SCRUNCH and SETSCRUNCH are related to screen

commands.

Chapter 6: Text ana Screen Commands

Primitives Affecting Text on the Screen

This section presents the commands mat ailed the screon The

commands are

CLEARTEXT
CURSOR
FULLSCREEN
SETCURSOR
5ETW1DTH
SPLITSCREEN
TEXTSCREEN
WIDTH

*

CLEARTEXT
CLEARTEXT (CT| (command)

CLEARTEXT clears the enure screen and puts (he cursor at

the upper-left comer ol the teat part of the screen If you have

ooen using the apM screen, the cursor Is on the fourth line

Irom the Bottom

CURSOR
CURSOR (operation)

CURSOR outputs a list ol the column and Rm numbers of the

Mcion setcuAson cursor position The upper-left corner ol the screen ts |0 0) The
upper-r^hi is |39 0| if the screen width ts 40, and (79 0| if the

screen width is 80

EEample:

The procedure TAB tabs over to the next taD stop after

something is typed. Tab slops are focaied m every eighth

column

TO TAB
TYPE CHAR 32
IF (REWAINDER FIRST CURSOR 8) > [TAB]
END

Chapter 6: Text and 5creen Commands

TD FLAVORCHART
TYPE "FLAVOR TAB TAB PR "RATING PR I"

1

TYPE "CHOCOLATE TAB PR 97
TYPE "STRAWBERRY TAB PR 73
TYPE "BANANA TAB TAB PR 19
END

^FLAVORCHART
FLAVOR RATING

CHOCOLATE 97
STRAWBERRY 73
BANANA 18

FULLSCREEN

FULLSCREEN (FS» IcommanO)

The FULLSCREEN command devotes the entire screen lo

graphics Only Urn turtle field shows; any text you type will be
invisible to you. although Logo wt\\ stilt carry out your

instructions

II Logo needs to display an error message while you are using

the full graphics screen. Logo splits the screen

SETCURSOR
SETCURSOR \cotumnnumber fraenumber] (command)

SETCURSOR sets the cursor to the position indicated by
coiumnnumbef and Hnenumbet Litres on the screen are

numbered from to 23 Character positions (columns) ore

Primitives AMectmg Teat on the Screen

numbered Irom to 39 if the screen wdlh 15 40 and to 79 if

(he screen width is 80

39

2'}

An error occurs i' the line number <s noi between and 23, or if

the column numrjor is not between and 38 (78 I the screen

width is 80) It coiumnmimber or tmenumber is a decimal

number Logo truncates it to an mieger.

Examples:

SETCURSOR f 20 121 puis The cursor near the middle of the

screen

TO MOVECURSOR :K :V
SETCURSOR LIST <:X • FIRST CURSOR > C:Y !

• LAST CURSOR)
END

*CtEARTEXT
*>PRINT "A MOVECURSOR 2 5 PRINT "B

SETW1DTH

SETWIDTH width (command)

The SETWIDTH command sets the width ol the screen to width

characters per line. The wti/tft input must have a vahje of

Sew nrcuon wiDTH either 40 or 80+ The default setting lor the screen width

depends on which computer you're using tf you re using an

Apple He. the default setting for the screen wirith is 40 N you re

using an Apple He. the default setting is whatever the

80.40-column switch is set to.

Cn^pt-r ft T>ti ind Scteen CommartQI

Example!

^SETWIDTH 80 changes me screen width to 80 character*

per line

SPLITSCREEN
SPUTSCflEEN (SSI (command)

SPLITSCREEN devotes the top 20 lines of the screen to

graphics and the bottom lour lines to text

TEXTSCREEN
TEXTSCREEN (TS) (command)

TEXTSCREEN devotes me entire screen to tent, me graphics

screen >s mvis*0*e to you until a graphics procedure is run

WIDTH
WIDTH (Operation)

5*. Mrtioh setwidth ft* WIDTH outputs the current width of the screen, either 40 or 80
ewigima tr»rwm *tam When you start up Logo, WIDTH outputs either 40. It you re

usmg an Apple He. or whatever the BO.'40-colurnn switch is set

10. II you re usmg an Apple he.

Special Control Characters That Change Screen Use

This section covers the special control characters that you can

use to change me screen use. These control characters are

CONTROL-L
CONTROL-S
CONTROL-T

CONTROL-L

(cowttolXD (special character)

CONTROL-L is similar rn oHect to FULLSCREEN. You can use

il at any time.

Special Control Characters

If you p*ess
screen appears,

screen

)

j while m the Logo Editor, the graphics

'coNinjxHT) to restore the Editor text

CONTROLS
(special character)

is similar In effect to SPLiTSCREEN You can use

at any time

CONTROLS
(special character)

fooWftpiKT) ift similar »n ellMt lo TEXTSCREEN A devolesjM

entire screen lo leit You can use <t at any time (co^nqiXD
restores the Editor text screen it you have |ust used

Chapter 6: Text and Screen Commands

Words and Lists

87 Words Some General Information

06 Lists: Soma General information

69 Breaking Words and Lists Into Pieces

70 BUTFIBST
71 BUTLAST
71 FIRST
73 ITEM
73 LAST
74 MEMBER
75 Putting Words and Lists Together

76 FPUT
76 LIST

77 LPUT
78 PARSE
78 SENTENCE
80 WORD
81 E*amintng Wo*ds and Usts

81 ASCII

82 BEFOREP
83 CHAR
85 COUNT
65 EMPTYP
67 EQUALP
68 LISTP

88 MEMBERP
B9 NUMBERP
90 WORDP
90 Changing tne Case of Words
90 LOWERCASE
91 UPPERCASE

Chapter 7; Words and Usts

1

!

This chapter describes the primitives thai work on two types of

objects in Logo: words and lists With the primitives described

in this chapter, you can

s break words and lists into pieces

• put weds and lists together

• examine words and lists

• change the case of words end lists

I Words: Some General Information

A word is made up of characters Here are some examples of

words:

HELLO
X

314
3,14

R2D2
PIGLATIN
PIGLATIN
PIG-LATIN Hyped as PlGVLATIN)
HEN3RY
WHO?
INOW1

Each character is an element of the word The word HEN3RY
coniains si* elements

H E N 3 R Y

Words: Some General Information

Apittftjli E Paring lor miy»
d#*ta*ts on ho* LoqoMM ftpvotf

So* trw action o» m»i ttapi*i on

of the ivnpty «od

A word is usually demited oy spaces, whicn means mat there

is a space before the word (unless it is preceded by or
M

) and

a space after the word. The spaces set the word off from the

rest of the line In addition to spaces these characters delimit

words:

< >

To treat any of these characters or the space as a normal

alphabetic character, put a backslash (\) before it

Example:

^PB "PIG\-LATIN
P10-LATIN

Note thai me Quotation mark character O and the colon (:) are

not word delimiter*

You can also have an empty word, which is a word with no
elements Vou type in the empty word by typing

Lists: Some General Information

a list is made up of Logo objects* each o) wh*ch is a word or

another list You indicate that something is a list by enclosing it

in square brackets
(|]) Here are some examples of hats:

| HELLO THERE. OLD CHAP|
[X YZ|
IHELLOI
||HOUSE MAISONI (WINDOW FENETRE| |DOG C<

H1EN||

(HAL (C3PO R2D21 |QRZ| | ROBBIE SHAKEY||

M M 2||17|17 2)||

u
Tne list (HELLO THERE. OLD CHAP| contains four elements:

HELLO
THERE.
OLD
CHAP

Note that the list |i |1 2) |17 |17 2||) contams only three

elements, not six, me second ano third elements are themselves
lists

Chapter 7: Words and Lists

5e* ipcno'i or this chaptei on
1l# EMPTYP pmuiire fo» fiampv-t
or nw wnpty lit)

Element i i

Element 2 |1 2|

Elements |17 |17 2]|

The list || a list with no elements. 19 the empty list

Breaking Words and Lists Into Pieces

The operations thai oreak wxas ana lists mio pieces are

BUTFIBST (BF)

BUTLAST |BL>

FIRST
ITEM
LAST
MEMBER

Ttie following chart shows how FIRST ana BUTFIRST (BF)

work II you want lo try out these operations use the SHOW
command.

FIRST

BF

FIRST

BF

FIRST

BF

FIRST

BF

FIRST

BF

JOHN

JOHN

(MARY JOHN
BILL)

|MARY JOHN
BILL)

||MARY JOHN|
BiLL

j

J

OHM

MARY

IJOHN BILL|

(MARY JOHN|

IfMARY JOHN| |BILL|
8ILL|

|MARY IJOHN MARY
BILL]]

(MARY IJOHN ||JOHN BILL||

BILLH

|) Of ' Error

|]
or ' Error

LAST anO BUTLAST (BL) work m the same way eicept that

they work on the last element

Breaking WorOs and Lists Into Pieces 169

BUTFIRST
BUTFIHST otyeet (BF) (operation)

BUTFIRST outputs all but the Hrtt element ol otyect. BUTFIRST
ol the empty word or the empty list is an error.

Examples;

Operation

BUTFIRST IEFFIE MANIATIS)

BUTFIRST DOGS

BUTFIRST |DOGS| -

BUTFIRST |THE DOGS)

BUTFIRST ||THE A AN| |DOG
CAT MOU5E] |BARKS
MEOWSM

BUTFIRST *

BUTFIRST
1

1

Output

[MANIATIS)

OGS

I |
(the empty hat)

[DOGS]

||DOG CAT MOUSEI |BARKS
MEOWSU

Error

Error

TD TRIANGLE : OBJECT
IF EMPTYP : OBJECT I5TDP1
PR : OBJECT
I H I AHOL t bUIMNSI :UBJtC1
EHD

'TRIANGLE "STROLL
STROLL
TROLL
ROLL
DLL
LL
L

'TRIANGLE EKANGAR0Q5 JUMP GRACEFULLY I

KANGAROOS JUMP GRACEFULLY
JUMP GRACEFULLY
GRACEFULLY

Chapter 7 Words and L<sts

BUTLAST
BUTLAST obfect (BL) (operation)

BUTLAST outputs all Out the last element of oO/ect

Examples!

Operation

BUTLAST (BARS G, MINGIEj

BUTLAST "FLOWER

butlast |flower)

butlast ||the a an] (bird

bee flowerj1

outlast

BUTLAST
[

]

Output

|BARB G |

FLOWE

||THE A ANII

EHDl

Error

The input to the following procedure should be an adjectrve

ending in Vt

TO COMMENT :WDRD
PR SE [YOU ARE) : WORD
PR SE CI AMI WORD BUTLAST :U0RD "IER
END

^COMMENT "FUNNY
YOU ARE FUNNY
T AM FUNNIER

FIRST

FIRST ctfyecf (operation!

FIRST outputs the first element ot OO/ect FIRST of the empty
word or the empty list is an error Note that FIRST ot a word is

a single character. FIRST ol a list can be a word or a list

Breaking Words and Lists tnto Pieces

Example*!

Operation

FIRST |HOUSE MOUSE
LOUSE)

FIRST "HOUSE

FIRST [HOUSE]

Output

HOUSE

H

HOUSE

Operation Output

FIRST (|THE A AN) |UNICORN |THE A AN[

RHINOI |SWMS F|JES
GROWLS RUNSH

FIRST Error

FIRST
[|

Error

TO PRIHTDDWH : INPUT
IF EMPTYP : INPUT [STQP1
PR FIRST : INPUT
PRIHTDOWN BF : INPUT
END

^PRINTDOWN "MOUSE
H

u

s

E
9 PR INTDOWN Cft STRAWBERRY SUNDAE 1

A
STRAWBERRY
SUNDAE

Chapter 7 Words and Lists

ITEM

ITEM Mt&ger object (operation)

ITEM outputs the element of otyect wnose position within oQfect

corresponds to integer. For example* H integer is 3, ITEM

outputs the third element In the object Ootect is a word o* a
list. An error occurs if integer ts greater than the lengtn of

object or l(object d the empty word or tat

Examples:

9MAKE "PETS [DDG CAT HAMSTER CANARY 1

'PR ITEM 3 :PET5
HAM5TER
°PR ITEM 1 "APPLE
A

LAST
LAST object (operation)

LAST outputs the last etement of oD/ecl LAST of the empty
word or the empty hst is an error

Examples:

Operation

LAST ISMARNEE MARIO
RENAUOj

LAST VANILLA

LAST (VANILLA)

LAST ||THE A| FLAVOR IS

| VANILLA CHOCOLATE
STRAWBERRY!)

LAST

LAST
[|

Output

RENAUD

A

VANILLA

[VANILLA CHOCOLATE
STRAWBERRY|

Error

Breaking Words and Lists Into Pieces 173"

TO PRINTBACK : INPUT
IF EMPTYP i INPUT TSTOPJ
PR LAST : INPUT
PRINTBACK BL : INPUT
END

''PRINTBACK "GANDALF
F

L

A

N

A
G

MEMBER
MEMBER object* o0ject2 (operation)

MEMBER outputs the part of object2 m wtich oO/ectt is the
fast element H 00/ectt I* not an elemeni of object2. MEMBER
outputs the empty Jisi or the empty v/ord. This operation is

useful for accessing information in a file or for sorting long lists

Examples:

'SHOW MEMBER "A [A B Ci
tA B CJ

*>SH0W MEMBER "Bugs iLearn Bug? Logo]
(Bugs Logo]

''SHOW MEMBER (Plaget PapertJ (Children !

Computers (Teach Activity] (Placet Pap?
ertll
I TPiaget Paper I]

3

*>PR MEMBER "ABC "XYZABCDEF
ABCDEF

Chapter 7: Words and Lists

Putting Words and Lists Together

The operations tnat put worcs and Usts together are

FPUT
LIST

LPUT
PARSE
SENTENCE (SE)

WORD
Trie MOWlng chart compares FPUT, LIST, LPUT. SENTENCE
(SE). and WORD.

Operation Input 1 Inpul 2w
Oulpul

FPUT 'LOGO "TIME F*nnrhi U<

LIST LOGO TIME (LOGO TIME]

LPUT LOGO "TIME Error

SE LOGO TIME (LOGO T»ME|

WORD "LOGO time LOGOT1ME

FPUT TURTLE lis ruN| (TURTLE IS FUN]

UST TURTLE |IS FUN) |TURTLE |iS FUN|

LPUT "TURTLE |IS FUN| |IS FUN TURTLE!

SE "TURTLE |IS FUN| ITURTLE IS FUN)

WORD TURTLE |IS FUN| Error

FPUT
|AND MORE

|

(TO COME| ||ANO MORE| TO
COME|

UST |ANO MORE] |TO COME) ||AND MORE) (TO
COME ||

LPUT |AND MORE) |TO COME| |TO COME |AND
MORE||

SE [AND MORE) |TO COME| (AND MORE TO
COME|

WORD (AND MORE] |TO COME| Error

Pumng Words and Usts Together [75

Operation

FPUT

UST

LPUT

SE

WORD

Input 1

COMPUTERS

COMPUTERS

COMPUTERS

COMPUTERS

COMPUTERS

Input 2 Output

(COMPUTERS)

(COMPUTERS
(II

(COMPUTERS)

(COMPUTERS)

Enor

FPUT
FPUT oo/ect tost (operation)

The FPUT (lor lir&t pull operation outputs a new list formed by
putting object at the beginning ot t*st

Examples:

Operation Output

FPUT HAMSTER)DOG CAT| |HAMSTER DOG CAT|

FPUT (THE A AN
|
(CUP ||THE A AN| CUP GLASS)

GLASS)

FPUT 'A I I
|A|

UST
UST ob/ectt otyKf? (operation)

(LIST otyectr obfect2 otjeca ooyecW,.)

Tne LIST operation outputs a hst whose elements are otyectl.

Qtyect2. and so on.

76l Chapter 7 Words and Lists

Examples:

Operation

LIST
4ROSE |TULIP

CHRY3ANTHEMUM|

(LIST ROSE TULIP
"CHRYSANTHEMUM)

LIST |A QUICK BROWN FOX|
1L0OKS AT THE LAZY FROG]

LIST "A (I

Output

|ROSE ITULIP

CHRYSANTHEMUM!!

[ROSE TULIP
CHRYSANTHEMUM)

||A QUICK BROWN FOX]
ILOOKS AT THE LAZY
FROG||

When LIST is used with a single input, parentheses are needed
around the expression For example:

9MAKE "ANIMALS "TOADS
^SHQU CLIST : AN 1 MALS

)

f TOADS J

LPUT
u.ipL'-dt.i:4i;

The LPUT ifor last put) operation outputs a new M formed by
putting oDfect el the end of list

Examples:

Operation

LPUT GERBIL (HAMSTER
GUINEA. PIG)

LPUT |THE A AN| |CAT
ELEPHANT

|

LPUT *A Q
LAST LPUT "GERBIL
jHAMSTER GUiNEA_PIG|

Output

|HAMSTER GUINEA PIG
GERBIL)

|CAT ELEPHANT |THE A
AN||

1*1

GERBlL

The toWpwing p*gcedurc aWJs a new entry lo an

English -Spanish dictionary.

Putting Words and Lists Together m

TD NEWENTRY : EHTRY
MAKE "DICTIONARY LPUT :ENTRY : DI CT 1 DHAR

•

Y
END

?MAKE "DICTIONARY [[HOUSE CASA1 [SPAN 15!

H ESPANOL) [HOW COMOU
7SH0W : DICTIONARY
t [HOUSE CA5A1 [SPANISH ESPANOL J I HOW CO!

nan
^NEWENTRY [TABLE MESA 1

•»SHOW : DI CT I ONARY
[[HOUSE CASA1 [SPANISH ESPANOL 1 (HOW CO!

MO) [TABLE MESA)

I

PARSE
PARSE fcvord (operation)

PARSE outputs a Hal that is obtained Irom parsing word.

PARSE is use*ul lor converting the output of HEADWORD <nto

a llsL

Examplatt

''SHOW PARSE "word
[word)
->MAKE "Input READWORD
dogs cats hamster?
''SHOW : Input
dogs cats hamsters
''SHOW PARSE : Input

(dogs cats hams t er 3 1

SENTENCE
SENTENCE otyKff otyec& (SE) (operation)

(SENTENCE obtectt Otyect2 otyectf ~)

SENTENCE outputs a list made up ot the contents in its Inputs.

Chapter 7; Words and Usts

Examples:

Operation

SENTENCE PAPER BOOKS

SENTENCE IPAPEHI
IB0OKS1

SENTENCE APPLE |PEAR
PLUM BANANA)

SENTENCE |A QUICK
BROWN FOX| ILOOKS AT
THE LAZV FROG|

Output

(PAPER BOOKS|

[PAPER BOOKS!

(APPLE PEAR PLUM
BANANA)

|A QUICK BROWN FOX
LOOKS AT THE LAZY FROG|

The following procedure prints a twin announcement.

TO ANNOUNCE : F IRSTHAME : LASTNANE
PR [WE'RE HAPPV TO ANNOUNCE THE BIRTH 0!
F J

PR CSE i F I RSTNAME "K. tLASTNAME)
PR 111 POUNDS II OZ1
END

''ANNOUNCE "ERIC **GEE\ - 5 ILVERMAN
WE'RE HAPPV TO ANNOUNCE THE BIRTH OF
ERIC X. GEE -S I LVERMAN
1 t POUNDS 1 1 QZ

Further Examples:

Operation

(SENTENCE APPLE "PEAR
BANANA)

(SENTENCE 'MONET)

SENTENCE hMONET
[J

Output

IAPPLE PEAR BANANA)

|MONET|

|
MONET)

When you give SENTENCE a smgte input, you need to put

parentheses around the expression. For example:

'MAKE "ANIMALS "KITTENS
7SH0W (SENTENCE : AN I ItALS)
IK I TTENS

]

Company the outputs when SENTENCE and LIST ore applied to

lists that contain other lists

Putting Words and Lists Together

Operation On l
put

SENTENCE |THE DOG]
| LIKES (GREEN MICEH

LIST | THE DOG| (LIKfcS

(GREEN MICEII

|IHE DOG LIKES |GREEN
MICEH

||THE DOG| |LIKES |GREEN
MICEHI

WORD
WORD worm wtvct? (operation)

|WOR0 HWtfl worOZ wor<33 ,)

WORD outputs a woid made up ol its inputs.

Examples:

Operation Output

WORD SUN SHINE SUNSHINE

(WORD CHEESE "BURG ER) CHEESEBURGER

WORD BURG |ER| Error

WORD S 'MILES 5MILES

The procedure SUFFIX puts AV at the end ol its input

TQ SUFFIX :WD
OUTPUT WORD :UID "AY
END

»PR SUFFIX "ANTEATER
ANTEATERAY

The essence ol the procedure SUFFIX is incorporated mto PIG

and LATIN, which translate words and lists mto a dialect ol Pig

Latm

TO LATIN : SENT
IF EKPTYP : SENT I OP t J

)

OP SE PIG FIRST : SENT LATIN BF : SENT
END

Chapter 7. Words and Lists

ra PIG :UORD
IF MEMBERP FIRST :UORD (ft E I U V] CO J

P WORD :UORD "AVJ
OP PIG WORD BF :UORD FIRST :UORD
END

'PR LATIN (NO PIGS HAVE EVER SPOKEN PIG'
LATIN AMONG HUMANS]
ONAV IGSPAV AVEHAY EVERAV QKENSPA Y IGPA!
V AT I NLA V AMONGAV UMANSHAV
?

Examining Words and Lists

The operations mat you use tn checking words and lists are

ASCII EOUALP
BEFOREP LISTP
CHAR MEMBERP
COUNT NUMBERP
EMPTVP WOROP

ASCII

ASCII character (operation)

see uio %mo« chah - hh« to ASCII outputs the American Standard Code for Information

w'a.vji
F

irX^
comolB,B °' Interchange (ASCII) code for character II the input word

contains more than one character. ASCII uses only us first

character.

Examples:

ASCII B outputs 66

The procedure SECRETCODE maKes a new word by using the

Caesar cipher (adding 3 to each letter) Note that trns example

does not work wrth lowercase letters.

TO SECRETCODE :WD
IF EMPTYP :UD (OUTPUT "1

OUTPUT WORD SECRETCODELET FIRST :WD SEC'
RETCODE BF :WD
END

Examining Words and Usts

TO SECRETCODELET :LET
MAKE "LETHUW (ASCII :LET) - 3
IF :LETHUM > ASCII "Z I MAKE "LETNUM :LE!
THUM - 2G1
OUTPUT CHAR :LETHUM
END

?PR SECRETCODE "CAT
FDW
^PR SECRETCQDE "CRAYON
FUDBRQ

BEFOREP
BEFOREP wordf wora2 (operation)

5w Atwidn F tar i list oi am BEFOREP outputs TRUE ll wottjl comes oefoee word?. To
ascii code* *nd ihar meop-ngt mahQ tno comparison, Logo uses the ASCII codes of the

characters in the words Note mat ail uppercase letters come
before ail lowercase letters

Examples:

Operation Output

BEFOREP A a TRUE

BEFOREP apple "Zoo FALSE

BEFOREP UPPERCASE TRUE
apple UPPERCASE "Zoo

The following SORT procedure takes a list ot words ana

outputs them alphabetically

TO SORT :ARO iLIST
IF EMPTYP ; ARG [OP ;LISTJ
MAKE "LIST INSERT FIRST : ARG :LIST
OP SORT BF : ARG :LIST
END

TO INSERT :A :L
IF EMPTYP :L [DP < LIST :A)I
IF BEFOREP :A FIRST iL (DP FPUT :A aLl
OP FPUT F1R5T :L INSERT :A BF :L

END

Cnapter 7: Words and Lists

Try this

MAKE "50RTLIST SORT IA D E F T C ZI tl

PR :50RTL1ST
A C D E F T Z

Then type

MAKE "SORTLIST SORT [FDD BAR BAZ1 rSOR!

TL 1ST
PR : SORTLIST
A BAR BAZ C D E F FDD T Z

CHAR
CHAR integer (operation)

Refer io taMAdiM f tor a ccnui*i» The CHAR operation outputs the character whose ASCII code is

Hit at to ASCI cooes mteger. An error occurs *! integer rs not the ASCI! code for any

character.

Characters can be normal (white characters on black

background) or Inverse vxJeo (black characters on white

background) The ASCII codes are organized as follows.

0-31 uppercase letters

32-47 punctuation

48 - 57 digits

58-63 punctuation

64 -90 uppercase Letters

91 -96 punctuation

97- 122 lowercase letters

123- 127 punctuation

128-154 inverse-video uppercase letters

155 - 191 inverse-video digits and punctuation

192 - 218 special graphics character*

219 - 255 <nverse v«J*o lowercase letters

Examining Words and Lists S3

To change a normal character to inverse video, use the

foltowing procedure:

Examples:

TO CONVERT : CHAR
IF CA5CII : CHAR) > 127 COP :CHARI
IF OR (ASCII :CHAR> < 64 AND < A5CI I eCH!
AR> > 96 (ASCII : CHAR) < 126 COP CHAR 1!

26 • ASCII : CHAR 1 I OP CHAR 64 * ASCII tl
CHAR]
END

INVERSE displays a word in inverse video:

TO INVERSE :UORD
IF EMPTYP :W0RD t OP "]

OP WORD CONVERT FIRST :W0RD INVERSE BF I

: WORD
END

'PR (NT
YOGURT

NVERSE "VOGURT

Chapter 7. Words and Usts

COUNT
COUNT object (operation)

COUNT outputs the number of elements in object, whlcfi is a

wo*d or a list

Example*!

Operation Output

COUNT |A QUICK BROWN 4
ctsum* |'s uuturv onuvvr* **

FOX
|

COUNT |A |OUICK BROWN| 3

FOX|

COUNT COMPUTER 8

''MAKE "CLASS f JOSE ANGELA 14 1 N I FRED LIN!
G NORBERT BRIAN MARIA!
*PR COUNT :CLASS
7

The following procedure prints a random element of a word or a

list:

TO RANPrCK : OBJECT
PR ITEM C1 * RANDOM COUNT :OBJECT> : OB *

JECT
END

*>RANP 1 CK tCLASS
BRIAN

EMPTYP

EMPTYP object (operation)

EMPTYP outputs TRUE If object \s the empty word or thB

empty hst: otherwise it outputs FALSE.

Examining Words and Dsts fas

Examplos:

Operation Output

EMPTYP 3 FALSE

EMPTYP BUTHRST FALSE
UNICORN

EMPTYP BUTLAST U TRUE

EMPTYP BUTFIRST TRUE
| UNICORN |

This procedure. TALK, matches animal sounds io animals

TO TALK : AN I MALE; : SOUNDS
IF OR EMPTYP :SOUNDS EMPTYP : AN I HALS CP!
R [THAT'S ALL THERE ISM STOP 1

PR 5E FIRST : AN IMALS FIRST :SDUNDS
TALK BF : ANIMALS BF : SOUNDS
END

''TALK [DOGS BIRDS PIGS] [BARK CHIRP DIN!
Kl
D0G5 BARK
BIRDS CHIRP
PIGS DINK
THAT'S ALL THERE IS!

The REVPRINT procedure reverses elements In a word or list

TO REVPRINT ; TH I NG
IF EMPTYP : TH I NG [PR [] STDPI
TYPE LAST : TH I NG
IF LISTP : TH I NG I TYPE CHAR 321
REVPRINT BL :TMING
END

•REVPRINT "ELEPHANT
TNAHPELE
'REVPRINT "PUMPERNICKEL
LEKC1NREPMUP
'REVPRINT [ALISON LOVES MATTHEW 1

MATTHEW LOVES ALISON
'REVPRINT "OTTO
OTTO

Chapter 7: Words and Lists

EQUA LP
EQUALP obfeat oo/ec& (operation)

Examples:

Operation Output

eQUALP RED FIRST |RED
VELLOW1

TRUE

EQUALP 10050'2 TRUE

EQUALP |THE A AN
|
|THE A|

EQUALP "

1

1

FALSE

FALSE (the empty word and
Ihe empty list are not Klenticai)

The following operation teds wneiher its first input (a character)

is an element ol its second input |a word)

TQ IMP t CHAR : WORD
IF EMPTYP :U0RD 10UTPUT "FALSE 1

IF EQUALP : CHAR FIRST :WORO I OUTPUT *'TRt

UE J

OUTPUT INP : CHAR BUTF [AST :UQRD
END

*>PR INP "A "TEACUP
TRUE
->PR INP "I "SAUCER
FALSE

Examining Words and Lists 187

LISTP

LISTP abject (operation)

LISTP Outputs TRUE it object is a list; otherwise it outputs

FALSE.

Examples:

Operation Output

LISTP 3 FALSE

LISTP |3| TPUE

LISTP
I I

. TRUE

LISTP FALSE

LISTP |A BC |D E] | F |G||| TRUE

LISTP BUTFIRST FALSE
"CHOCOLATE

LISTP BUTFIRST TRUE
|
CHOCOLATE]

MEMBERP
MEMBERP object' obfect2 (operation)

MEMBERP outputs TRUE II object! is an element ot object?.

Otnerwise « oulputa FALSE

Example*:

Operation Output

MEMBERP 3 |2 5 (3| 6| FALSE

MEMBERP 3 \2 5 3 6| TRUE

MEMBERP |2 5| |2 5 3 6| FALSE

MEMBERP BIT RABBIT TRUE

MEMBERP (FLORIDA TRUE
GEORGIA) || FLORIDA
GEORGIA j IOWA

|

Chapter 7: Wo'Ol and Lists

Operation Output

MEMBERP (FLORIDA FALSE
GEORGIA] (FLORIDA
GEORGIA IOWA|

MEMBERP BUTFIRST TOG TRUE
|OE OF OG OHJ

Tne following procedure determines whether its input is a

vowel:

TD VQWELP : LETTER
OUTPUT MEMBERP : LETTER [A E I U)
END

*PR VQWELP "F
FALSE
?PR VQWELP "A
TRUE

NUMBERP
NUMBERP 00/ect (operatlonj

NUMBERP outputs TRUE it otyect *5 a number otherwise

outputs FALSE.

Examples:

Operation Output

NUMBERP 3 TRUE

NUMBfRP|3| FALii

NUMBERP 3.14E23 TRUE

NUMBERP [} FALSE

NUMBERP ' FALSE

NUMBERP BUTFIRST 31652 TRUE

NUMBERP BUTFIRST FALSE
[ELEPHANT)

Examining Words and Lists [89

WORDP
WORDP oOfect (operation)

WORDP outputs TRUE it object is a word; otherwise it outputs
FALSE

Not*: In Logo, number are considered words

ExampioK:

Operation Output

WORDP ZAM TRUE

WOROP |E GRESS| FALSE

WORDP 3 TRUE

WORDP |3| FALSE

WORDP II FALSE

WORDP TRUE

WORDP BUTFIR9T BURG TRUE

WOROP BUTFIRST |BURG| FALSE

Changing the Case of Words

The operations tnat change the case of words
LOWERCASE and UPPERCASE.

LOWERCASE
LOWERCASE nwtf (operation)

LOWERCASE outputs worti in ail lowercase letters

Chapter 7 Words ana Lists

Examples:

Operation Output

LOWERCASE "Hello hello

LOWERCASE "BIG big

TO YESP jWORD
IF EGUALP LOWERCASE : WORD "yes TOP "TRU!
El COP "FALSE 1

END

*PR YESP "YES
TRUE
'PR YESP "SEVEN
FALSE

UPPERCASE
UPPERCASE word (operation)

UPPERCASE outputs word In all uppercase lettefs

Examples:

Operation Output

UPPERCASE "Hello HELLO

UPPERCASE "tttll LITTLE

TO PR IrlARYP ;WORD
IF MEMBERP UPPERCASE : WORD i RED BLUE YE!

LL0W1 (OP "TRUE) IDP "FALSE

)

END

'PR PRIMARY? "red
TRUE
'PR PRIMARY? "green
FALSE

Changing the Case of Words

Variables

95 VarlaWes: Some General Information

96 EDN
97 EONS
98 LOCAL
99 MAKE
100 NAME
101 NAMEP
101 THING

Chapter 8: Variables

This chapter gives you some general information about how
Logo uses variables and then piovides descriptions of ihe

primitives mat you use with variables. The primitives are

EON
EONS
LOCAL
MAKE
NAME
NAMEP
THING

Variables: Some General Information

or mo« information on
\w Chaplm ?

A variable is a container mat ftoWs a Logo object The
container has a name and a value The object he*d ft) the

container is called the variable's value You create a variable m
one of two ways either by ustng the MAKE or NAME
command, or by using procedure inputs

Logo has two kinds ot variables, local variables and global

vanaoies Variables used as procedure inputs ate local to that

procedure They eust only as long as the procedure is running,

and will disappear from your workspace after the procedure

Stops running

Normally a vanable created by MAKE is a global variable The
LOCAL command lets you change those variables into local

variables. This can be very useful if you want to avo*d cluttering

up your workspace w»ih unwarned variables

Variables Some General informatron fss

EDN nameihsf} jcommand)

The EDN (lor edit name) command starts up the Logo Editor

with the named vanablefs) and corresponding value(s) You can

then edit these variable name(5| and valufflsl When you Kit the

Editor. Logo reads the contents ol the edit butter as if you had

typed each line from top level. Whatever variables and values

have been changed in the Editor are changed m Logo.

Example:

"'EDN "LANGUAGE.

The scieen now looks MtK

LOGO EDITOR

HAKE "LANGUAGE (ENGLISH FRENCH SPANISH!

0-A accept, help, fi-ESC cancel

You can now edit this variable as you wish and then press

fdHT) to e*it the Editor

Chapter 8: Vanab'es

EONS (command)

EDNS (tor edrt names) starts up the Logo Editor with all variable

names and itieir values in it. You can then edit these variables
1

names and values. When you exit the Editor. Logo reads the

contents ol the edit buffer as il you had typed each line from

lop level Whatever variables and values have been changed in

the Editor are changed in Logo.

Example:

^PDNS
MAKE "ANIMAL "GIBBON
MAKE "SPEED B5
MAKE "AIRCRAFT EJET HELICOPTER]
^EDNS

The display now looks like

LOGO EDITOR

MAKE "ANIMAL "GIBBON
MAKE "SPEED 55
MAKE "AIRCRAFT t JET HELICOPTER!

0- A accept, 6

-

7 help, d-*ESC cancel

EONS 1 97

You can then edit the names so they too* i*he this list:

MAKE "ANIMAL "GRYFF1H
MAKE "SPEED 55
MAKE "AIRCRAFT [JET HELICOPTER BLIMP]

Then

*PONS
MAKE "ANIMAL "GRYFFlN
MAKE "SPEED 55
MAKE "AIRCRAFT [JET HELICOPTER BLIMP]

LOCAL

LOCAL njm&ttst) (command)

The LOCAL command makes us input(s) local lo the procedure

wimm wtMCh (he LOCAL occurs A local variaWe is Accessible

only to that procedure and to procedures It calls, in this regard

it resembles inputs lo the procedure.

Example:

TO YESHO :QUESTI0H
LOCAL "ANSWER
PR :QUE5TI0H
MAKE "ANSWER FIRST READL I ST
IF EOUALP : ANSWER "YES I OUTPUT "TRUE

]

OUTPUT "FALSE
END

TD GREET
PR IWHAT IS YOUR FULL NAME*]
MAKE "ANSWER READL I ST
IF YESNO [DO YOU LIKE YOUR NAME*] [PR f

!

THAT'S GOOD!) I PR (TOO BAD])

PR SENTENCE [NICE TO MEET YOU, 1 : AN5WE *

R
END

'GREET
WHAT IS YQUR FULL NAME*
ROBIN GLASS
DO YOU LIKE YOUR NAME*

98^ Chapler tt Variables

NO
TOO GAD
NICE TO MEET YOU, ROBIN GLASS

Imagine whai happens it the LOCAL command is omitted from

YESNQ Each procedure uses a variable named ANSWER to

tiokl the user s answer to a question. Because the vanables are

no! local the procedure YESNO destroys the value that GREET
expects to have m that vanaWe

*GREET
WHAT IS VOUR FULL NAME 1

ROBIN GLASS
DO VQU LIKE YOUR NAME 7

NO
TOO BAD
NICE TO MEET YOU , NO

MAKE
MAKE natm object (command)

The MAKE command puts object m name s container, that is. it

grves the variable name the value ob/ect.

Examples:

MAKE "JOB 2S9
->PR ;J0B
259
'MAKE "JOB "WELDER
<>PR :JOB
WELDER
'MAKE "WELDER 32
'PR : WELDER
32
'PR THING :JQB
32
'MAKE :JOB [SHARNEE CHAIT]

Al this point JOB is WELDER, and THING JOB is |SHARNEE
CHAIT

|

SPRINT "JOB
JOB
°PR IHT :JOB

MAKE

WELDER
'PRINT THING "JOB
WELDER
'PRINT THING : JOB
SHARNEE CHAIT

TO WEATHER
PR [WHAT'S THE WEATHER LIKE TODAY?]
MAKE "ANSWER READLIST
IF :ANSWER > (RAINING! tPR II WISH IT M*
OULD STOP RAININGI STOP]
IF iANSWER • (SUNNY] I PR (I HOPE IT STA<
YS SUNNY) STOP!
PR (SE (I WONDER IF IT WILL BE I :AN5WER!
"TOMORROW. > .

END

'WEATHER
WHAT'S THE WEATHER LIKE TODAY 7

SUNNY
I HOPE IT STAYS SUNNY
'WEATHER
WHAT'S THE WEATHER LIKE TODAY'
CLOUDY
I WONDER IF IT WILL BE CLOUDY TOMORROW.
'WEATHER
WHAT'S THE WEATHER LIKE TODAY'
RAINING
I WISH IT WOULD STOP RAINING

NAME

NAME ob/tKt name (command)

The NAME command puis oDpct m name s container, thai is, it

gives the variable name the value object

Oapie> 8 Vanities

Examples:

'NAME 259 "JOB
''PR :JOB
259
'NAME "WELDER "JOB
'PR :JDB
WELDER

NAME is equivalent to MAKE with (he order ot me inputs

reversed Thus NAME "WELDER "JOB has the same ellecl as

MAKE JOB WELDER

NAMEP
NAMEP word (operation)

NAMEP outputs TRUE il word has a value. Ihal Is. It tvotd

e»ists it outputs FALSE otherwise.

Eumpln:
'PR NAMEP "ANIMAL
FALSE
'MAKE "ANIMAL "AARDVARK
'PR : AN 1MAL
AARDVARK
'PR NAMEP "ANIMAL
TRUE

Tne procedure INC, listed with the THING operation mat

follows, shows a use o(NAMEP.

U thing

THING name (operation)

THING outputs the thing in the container name, that is. the

value ol the variable name. TH I NO "ANV is equivalent to

:ANV.

THING

Example:

This procedure increments (adds 1 to) me value of a variable

TO INC :X
IF HOT HAMEP :X [5TDP

}

IF NUMBERP THING :X IflAKE iX 1 • THING
tXJ
END

Note the use ol MAKE :X rather than MAKE "X. Il is nol X (hat 5

being incremented The value ol X is not a number, but the

name ol another variable. It is that second variable that is

incremented

Fpi othei eurnpns *ae wictisn **MAKE "TOTAL 7
MAK£ ?pR • TOTAL

7

-MNC "TOTAL
*PR ; TOTAL
B
n

I HC "TOTAL
^PR : TOTAL
9

Chapter 8 Variables

Arithmetic Operations

105 Aftthmrtc Operations Some General Information

107 How Logo Evaluates Math Operations

108 PrehK'form Operations

108 ARCTAN
109 COS
109 DIFFERENCE
110 FORM
111 INT

112 INTQUOTiENT
112 PRODUCT
113 QUOTIENT
113 RANDOM
114 REMAINDER
115 RERANDOM
116 ROUND
116 SIN
117 SORT
117 SUM
116 Inlix-Foun Operations

119 Plus &gn
119 Minus Sign

120 Multiplication Sign

121 Division Sign

121 Less Than 5*gn

122 Equal Sign

122 GioatOf Than Sign

Chapter 9: Arithmetic Operations

ft

U'

This chapter presents ail the Logo operations lhal manipulate

numbers Logo has two Kinds ol notation tor expressing

arithmetic operations, prefix notation and infix notation Prefix

notation means thai the name of the procedure comes before

Its inputs Witn infix notation, the name of the procedure

goes between 113 Inputs, not before them.

This chapter contains

• a general Introduction 10 Logo s arithmetic operations

• descriptions of the prefix-form operations

• descriptions of the infix-form operations

I Arithmetic Operations: Some General Information

Logo has two kinds of numbers integers and deamats

3 is an <nleger

3.14 and 3 are decimal numbers

Logo provides primitives that let you add. subtract, multiply, and

awde numbers You can find sines, cosines, arctangents, and

square roots, and you can test wheUier a number t$ equal lo
h

less than, or greater than anotner number.

Arithmetic Operations

Scientific natation is a way at

ei£re**ing a nurrtwr ivrth an
eooneni

ChjpJtr 7. Worth and ban
?1EW9 In* EOUALP pnnu&vt*

Trio result of an arithmetic operation can be erther an Integer or

a decimal depending on the operation:

• INT, INTQUOTIENT, RANDOM. REMAINDER, and ROUND
always output integers

• ARCTAN. COS. SIN. SORT, QUOTIENT, and t always output

decimal numbers*

• The rest output integers if all their inputs are integers, and
decimal numbers II one or maze of their inputs are decimal

numbers (+.-,

Thus 7 / 2 Is 3 5 {a decimal number), but INTQUOTIENT
7 2 t& 3 (an integer)

Further. 3 5 * 6.5 is 10.0 {a decimaJ number), but 3 -* 7 tS 10
(an integer). Note that 3 + 7.0 is 10.0 (a decimal number).

The largest possible intoger in Logo is 2147483647, which is

f1
*!; the smallest is -2147463647. which is H^-l).

Deamaf numbers have soi digits ol accuracy and can include an
exponent lhat ranges from 36 to -30. Logo uses exponential form
(scientific notation) to represent numbers that cannot be written

as |ust su digits. Here are some examples:

1QE10 means 10*. or 10.000.000.000

1 0N10 means 10 or 00000000001

Notice that the N indicates a negative exponent

Logo rounds olt a decimal number if it contains more than six

digits For example, the number 2718281828459 045 is

converted to 2 71B28E12

Addition subtraction, multiplication, and division are available in

infix notation The name ot an infix procedure goes between its

inputs, not before them. Logo also provides addition and
multiplication in prehx form as operations taking two or more
inputs For example, the following eipressions are equivalent;

2 A i

SUM 2 1

In additK>n to those primitives listed here, the primitive EOUALP
is often used in conjuncbon with anthmelic operations EQUALP
is equivalent to the infix operation equa) sign (»

)

(
described In

this chapter

Chapter 9: Arithmetic OporotKjns

I How Logo Evaluates Math Operations

When a Logo line has several math operations. Logo evaluates

Ihem according 10 the operations precedence, The order Of

precedence from highest to lowest ts as follows:

Unary minus. Indicates a negative number (<3)

or the additive inverse of the input i-XCOH)

\ / Multiplication and division

+, - Addition and subtraction

>, < - Greater than, toss man. equals

Other math This group includes user-defined operations,

operations as won as pnmitive operations such as SIN.

DIFFERENCE and SUM

Thus,

COS 25 I 10

is read as

COS 125 + 10)

You can change the order of precedence just listed by using

parentheses Logo follows the standard mathematical practice

of performing operations enclosed m parentheses before

others II there are several operations within one sol of

parentheses, Logo uses the order ol precedence just given

Example:

?PR 2 • 4 • B / 4

10.0
*PR 2 • (4 * B / 4)
12.0
?PR <2 * 4 + B> / 4
4.0

Prefix-Form Operations

This sr*clion etolains Ihp nrefn-fofm ooerabons. which aooear
tn this order:

ARCTAN RANDOM
COS REMAINDER

Prellt-Form Operations 1 107

DIFFERENCE
FORM
INT

INTQUOT1ENT
PRODUCT
QUOTIENT

RERANDOM
ROUND
SIN

SORT
SUM

ARCTAN
ARCTAN number (operation)

ARCTAN outputs the arctangent (inverse tangent) of number
The output is a decimal number and is in degrees, not radians.

The output of ARCTAN is always a number between -90

and 90 If number is close to -1, the output may be unreliable

Example*;

Oporation Output

ARCTAN 2 63.4348

ARCTAN 444 89 671

The following procedures detme ARCSiN and ARCCOS:

TO ARCSIN :X
OUTPUT ARCTAN :X / (SORT V - tX 1 :X>
END

TQ ARCCOS :X
OUTPUT ARCTAN C SORT t - * *X> / :X
END

COS
COS degrees (operauon)

J no COS operation outputs the cosine of degrees. The output

is a decimal number. Degrees cannot be greater than 419EB. If

It is. an error occurs

Chapter 9: Arithmetic Operations

Examples:

Operation Output

COS 60 5

COS 30 866026

Here is a definition of the tangent function:

TO TAN : ANGLE
OUTPUT (S!H : ANGLE > / CDS :ANGLE
EHD

*PR TAN 45
1.0

DIFFERENCE
DIFFERENCE numbers number? (operation)

DIFFERENCE outputs the result ol subtracting num£w2!rom
number 1.

Examples;

Operation Output

DIFFERENCE 7 1 6

DIFFERENCE (5 * 6| |3*7) -10

DIFFERENCE tO 5 5

DIFFERENCE 6.3 107.4 -101 1

FORM
FORM number he/d precision (operation)

FORM outputs number as a wd >n the number ol spaces

indicated by field, with precision digits alter the decmiai pant
The input tor t*M must be an integer from 1 through 128 Tho
input for precision must Do an integer from through 6

it number is too small to use the full totf spaces
>
Logo adds

blank space before the numce* Note that the decimal point (J
and the minus sign (-) both count as an element In Mtf

Prefix-Form Operations 109

FORM works with ait integers, but only some doamal numbers
These are

-999909.0 through -0000001

000001 through 999999

Logo prints an other deamal numbers »n scientific notation, and
these cannot be handled by FOAM, instead. FORM outputs the

number nght justified in a word with fteid characters

Not*: Decimal numbers have onty snt significant digits no
matter how many you enter. Even when numbers are used in

conlunctlon With FORM lh*v aru rMiicwt tn sir ^ionrficant
digits before being passed to FORM.

An error occurs if field is or fs less than the number of digits

before the deamal pomt in number, if precision is
t
FORM

outputs number as an integer Trailing zeros are added if

precision ts greater than the number of digits after the deamal
point m number

II FORM outputs a number with fewer digits after the deamal
point than the input number, the last digit <s the result of

truncating the missing digits.

FORM is useM when you are trying to print columns of

numbers in an unvarying format

Chanter 9 Arithmetic Operations

Examples:

Operation Output

FORM 27 33 10 1 27.3

FORM 27 33 10 3 27.330

FORM 27E20 15 2 2.7E20

^WAKE "A -8.8886
*PR FORM :A 9 3

B.B88_
INT number loperatwi)

i«*o»cKM> rouno The INT operation outputs the integer portion of number. Logo
removes the decimal portion of ttie number, if one exists The
maximum integer is 2.147,483,647

Examples:

Operation Output

INT 52129 5

INT 55129 5

INT 5 5

INT -5 6 -6

INT -12 3 12

Tne procedure 'NIP toUs another its input is an integer:

TO INTP :N

IF NOT NUMBERP iN COP (NOT A NUMBER)

1

OP (COUNT :N) - (COUNT INT ;N)
END

SPRINT INTP 17

TRUE
''PRINT INTP 100 / B
FALSE
''PRINT INTP "ONE

Prefix-Form Operations

NOT A NUMBER
SPRINT INTP SORT SO
FALSE

INTQUOTIENT
INTOUOTlENT mtegerl integers (operation)

INTOUOTlENT outputs the result of dividing integer* by

mtegerZ. truncated to an Integer. An error occurs if ioteger2

is 0. K either input rs a deamal number, it >± truncated

Examples;

Operation Output

INTOUOTlENT 12 5 2

INTOUOTlENT -12 5 2

INTOUOTtENT 9 2 4

INTOUOTlENT 3 Error

PRODUCT
PRODUCT number 1 numbee2 (operation)

(PRODUCT number t number? numbers ,* t \

PRODUCT outputs trie product of us inputs it »s equivalent to

the ' mfn-torm operation With one input, PRODUCT outputs its

tnput

Examples:

Operation Output

PRODUCT 6 2 12

IPRODUCT 2 3 4) 24

PRODUCT 25 4 10.0

TO CUBE :HUM
OP (PRODUCT :HUM t HUM :NUWJ
END

Chapter 9: Arithmetic Operations

*PR CUBE 2

8

QUOTIENT
QUOTIENT number t number^ (operation*

QUOTtENI outputs the result of dividing number 1 Dy twnber2

It (s equivalent to the /
' * Iwm operation Number2 must not

bo 0. K II Is. an error occurs.

Example*;

Operation

QUOTIENT 12 6

QUOTIENT -12 5

QUOTIENT 6 2 5

QUOTIENT 3.2

Output

2.4

2.4

2.4

Errof

RANDOM
RANDOM mteger

RANDOM outputs a random nan*negative integer less than

integer

Examplet

RANDOM 6 can output 0, 1 4
2, 3* 4* or 5, The following

program simulates a ro« of a six-sided die

TO DG
OUTPUT 1 * RANDOM 6
END

->PR DG
3
*PR DG
5
*PR DG
3

Prefix-Form Operaftons nia

REMAINDER
REMAINDER integer} integer? (operation)

REMAINDER outputs the remainder obtained when integer! is

divided by integer? The remainder is always on integer. If

mtoger 1 and tnteger2&ie integers, Ml is integer t mod integer?

II mtegerl and mtegerS ore not integers, they are truncated

integer? must not be II it is. an error occurs.

Examptcsi

Operation Output

REMAINDER 12 10 . 2

REMAINDER 12 5 2

REMAINDER 12 15 12

REMAINDER -12 S -2

The following procedure tells whether its input is even:

TD EVENP ; NUMBER
P * REMAINDER i NUMBER 2
END

*PR EVENP 5
FALSE
'PR EVENP 12-163

TRUE

The following more general procedure lolls whether its tusi

input ts a divisor of its second input

TO DIVISORP :A :B
OP • REMAINDER :B :A
END

*PR DIVISORP 3 IS

TRUE
''PR DIVISORP 4 15
FALSE

Chapter 9; Arithmetic Operations

RERANDOM
RERANOOM (command)

RERANOOM makes RANDOM behave reproducibly: after you

run RERANOOM calls to RANDOM generate the same
sequences of numbers from (he beginning each time

Example:

TO DICE :THR0W5
IF iTHRDWS * [STOP]
PR 1 • RANDOM G
DICE : THROWS - 1

END

*D!CE 6
3

B

3

1

^DICE 6
5
5
5
1

3

1

*RERANDQf1
^DICE G
3
2

B

6
3

1

Prefi»-Form Operations

7RERANDOM
?DICE 6
3
2

3

1

ROUND
ROUND numoer (operation)

s*« uta me sample* *i section The ROUND operation outputs number rounded oil to the
lNT nearest mleger The maximum integer is 2.147.4B3.847

Examples;

Operation Output

ROUND 52129 $

ROUND 5.5129 6

ROUND 5 1

ROUND -5.8 -6

ROUND -12 3 -12

WW
SIN degrees (operation)

s** wctton cos The SIN operation outputs the sine oi degrees. Degrees cannot

be greater than 4.T9E6. If it <> an error occurs.

Example:

SIN 30 outputs 0-5

Chapter 9: Arithmetic Operations

SORT
SORT number (operation)

The SORT operation outputs the square root of number The
value number must not be negative or an error will occur

Example*:

Operation Output

SORT 25 5.0

SORT 259 '6 0935

The following procedure outputs the distance from the turtle's

position to HOWE.

TO FROM. HOME
P 5QRT SUM XCDR * XCDR YCOR YCOR
END

The procedure DISTANCE takes any two positions as inputs,

and outputs the d*stence between them

TO DISTANCE :P0S1 iP0S2
OP SORT SUM SQ (CFIRST :P0S1) - FIRST :!

P052> SQ (CLflST :P0S1) - LAST iP0S2
END

TO SO :N
OP :H • rN

END

*PR DI5TANCE (-70 101 ISO GOJ

130,0

SUM
SUM number i number! (operation)

(SUM number J number? number3 ...J

The SUM operation outputs the sum ol its inputs SUM is

equivalent to the * intix-form operation.

With one input. SUM outputs its input.

Prefu-Form Operations

Examples:

Operation Output

SUM 5 2 7

(SUM 132-1) 5

SUM 2 3 2.561 4 B6l

I Infix-Form Operations

This section explains the infix-form operations, which appear in

this OtQGt

I

<

Note that because the symbols tor these operations are

word-separators, spaces are optional before and after all of

them except the slash isee the following eipfanahonl Thus trie

following are equivalent

2 + 5

The only exception *s the slash (;) which indicates division You
must always out spaces before and alter the slash character.

4/8
3/9

The reason 1rx ih<s is that the / sign is used m pathnames

Chapter 9: Arithmetic Operations

Plus Sign

number 1 + number2 (mfi*-form operation)

The plus sign (+ | outputs trie sum oi its Kipuls M is equivalent

1o SUM. which is a prefix-form operation.

Eiamples:

Operation Output

S * 2 7

1-3-2*1 7

2 54 * 12.3 * 1484

Minus Sign

numtoetl - number2 (mfia-form operation)

The minus sign () outputs the result of subtracting number2
from number 1 II number 1 is missing and (here is no space
after the minus s«gn it outputs the opposite ol numbers
(0*r>umMr2).

Examples:

*>PR 7 - 1

6
*PR 7-1

6
*PR PRODUCT 1 -1

-7
*PR -3
-3
*PR - 3
-3
'PR -3 - -2
-1

Infix -Fotm Operations

The procedure ABS outputs the absolute value of its input

TO ABS :HUM
P IF :NUM < t-iNUMl t:NUMl
END

?PR ABS -33
35
?PR ABS 35
35

NEAR tells whether iwo numbers are close m value:

TQ NEAR :A ;B

DP (ABS :A - :B> C .01
END

?PR NEAR XCDR 100
TRUE
^PR XCOR
99-9934

For morr 4«h**a mtormiuan on Note mat there is a poteniiaJ ambiguity between the minus sign

Logo tte«t* the mnw sign. win one mput and me minus sign win two mputs^ Logo<W4 E NrHdQ reaves ui* amt>gu*ty as follows;

M is 6

7 - 1 1s also 6

7- 1 is also 6

But 7 -t is a pair of numbers (7 and -1)

Multiplication Sign

nutubcrJ * nufnber2 (Infix-form operation!

The astensk O outputs the pfoduct ol its inputs It Is equivalent

to PRODUCT, which is a prefix-form operation.

Examples:

Operation Output

6*2 12

2*3-4 24

13*13 169

Chapter 9. Arithmetic Operations

The procedure FACTORIAL outputs the factorial of lis input For

example. FACTORIAL 5 outputs the product of 5 * 4 * 3 2 • t

TO FACTORIAL :N
IF :H * I0P 11 I OP :H * FACTORIAL
END

*PR FACTORIAL 4
24
''PR FACTORIAL 1

1

; H * 1 I

Division Sign

numbert
I
number

2

(infix-form operation}

The slash (1 outputs Humbert drvided by number2. It is the
same as me quotient operation Numoerz must not oe o

Examples:

Operation

6 / 3

8'3

2.5 / 3.8

0/7

7/0

Output

20

266667

0.657895

00

Error

Less Than Sign

Humbert number? (mtu-form operation)

The less than sign (<) outputs TRUE it number} is »ess than
tr* eEFOBEP opeitwi * number?, otherwise «t outputs FALSE, it *s similar to me
flwTOJ " Chap,e# 7 BEFOREP operation txjt takes only numbers as inputs

Examples:

Operation Output

2 < 3 TRUE

-7 < -10 FALSE

Infix-Form Operations 121

Equal Sign

object! - object? (inlu-form operation)

The «ju* Mjn ** tsquivmrM 10

Chapiei 7

The equal s*gn[-
1 outputs TRUE (I objGCtt and otyectf are

equal numbers, identical words, or identical b&ts. otherwise it

outpuls FALSE

Note ihat the use or parentheses affects how Logo evaluates

the equal sign, as shown in this oxample:

FIRST "3,1416 - 3 outputs F

,

(FIRST "3.1416) • 3 Outputs TRUE

in the fust of these examples. Logo evaluates whether 3 1416

equals 3 oefore it executes FIRST

Eiamplos:

Oporation

100 - 50*2

3 - FIRST "3 1*16

|THE A AN |
- (THE A|

7-7

• =

Output

TRUE

TRUE

FALSE

TRUE (a decimal number is

equivalent to the

corresponding integer)

FALSE (the empty word and

the empty list am not Identical)

Greater Than Sign

nuwberl > nomber2 (infix-form operation)

The greater than sign (-) outputs TRUE if numberl is greater

than numbe>& otherwise it outputs FALSE.

Examples:

Operation

A > 3

-10 > -7

Output

TRUE

FALSE

I2?l Chapter 9 Arithmetic Operations

-

Conditionals and Flow of Control

125 Flow ol Control Some General information

126 U5>ng Conditionals

126 IF

127 IFFALSE
128 IFTROE
128 ICS'
129 interrupting Procedures

130 CO
130 OUTPUT
131 PAUSE
132 STOP
132 WAIT
1 33 Transferring Control and Repealing Instructions

133 CATCH
135 ERROR
136 GO
137 LABEL
137 REPEAT
138 RUN
140 THROW
140 Debugging Progiams

141 STEP
141 TRACE
143 UNSTEP
143 UNTRACE
144 Special Control Characters

144 OPEN APPLE-ESC
144 CONTROL-W
144 CONTROL-Z

Chapter 10 Conditionals and Flow of Control

This chapter presents the primitives and special control

characters that you use to change Logo's normal way of

executing a procedure The primitives and special characters

appear in five groups:

• pnmluves called conditionals that tell Logo to carry out

different instructions, depending on whether a condition is

met

• primitives that interrupt a procedure Detoro it has finished

executing

• primitives that lei* Logo to repeal instructions a certain

number ol times or to jump or transfer control to some other

instruction

• primitives for deougging programs

• 5peooi control characters that interrupt Logo s flow of

control either temporanly or permanently

I Flow of Control: Some General Information

Logo reads procedure definitions line by line, following the

instructions given in each line, it a procedure contains a

suoprocedure. Logo reads the lines of the subpcocedure betore

continuing in the superprocedure Flow of control refers to

the o*der in which Logo follows instructions There are times

when you want to alter Logo s normal How oi control. You can

do so with any of these methods:

Conditionals teil Logo to do one thing if such-and-such is

true, otherwise, do something else.

Flow of Control

Repetition tells Logo to run a l«t at Instructions one or

more limes

Malting tells Logo to stop this procedure before it

reaches the end.

Pausing toils Logo to interrupt this procedure while rt s

running, but let it resume afterwards.

I Using Conditionals

Conditionals allow Logo to cany out different instructions,

depending on whether a condition is met You use operations

that output TRUE or FALSE, called predicate to create this

condition. The result of the operation t& tne first input to one of

the IF primitives The primitives (or wnting conditionals are

IF

IFFALSE

IF7RUE
TEST

The three primitives TEST. IFTRUE, and IFFALSE perform

exactly the same function as the single primitive *F Which you

use is a matter of convenience and personal taste

if predicate hstr t<st2

H predicate *s TRUE, Logo runs ttstl M predicate is FALSE,
Logo runs t($t2\tt present) In either case, it the selected list

outputs something, the IF ts an operation, if the list outputs

nothmg, the IF is a command.

Example*!

Tne procedure DECIDE appears h three equivalent ways. The
first two use IF as a command—one version with two inputs to

IF, one with three inputs The third vers*on of DECIDE uses IF

Iwith three »nputs| as an operation.

IF

IF predicate ted (command or operation)

Chapter 10 Condiiionals and Ftow of ConlroJ

IF as a command:

TO DECIDE
IF - RANDOM 2 [DP "YES!
DP "HQ
END

TO DECIDE
IF * RANDOM 2 I DP "YES1 I OP "NOI
END

IF as an operation:

TO DECIDE
OUTPUT IF * RANDOM 2 ["YES) t"M01
END

IFFALSE

IFFALSE hst OFF) (command)

IFFALSE runs hst if Ihe resutt ol the mosi recenl TEST was
Sup wrcnrin Ttsi FALSE. otherwise il does noltiing Nole thai if TEST has not

been run m ifto same procedure or a superprocedure. or from

lop levei. IFFALSE does nolhtng.

Example:

TO QUIZ
PRINT [WHAT IS THE CAPITAL OF NEW JE >

RSEY-M
TEST "TRENTON UPPERCASE READWORD
I
FTRUE [PRINT "CORRECT!

1

IFFALSE [PRINT "WftONGl

END

*0(J1Z
WHAT IS THE CAPITAL OF NEW JERSEY**
NEWARK
WRONG

Us»ng Condilwais

IFTRUE
IFTRUE ttst)|FT) (commend)

Sw wttoi TEST IFTRUE runs iist 11 the resull of the most recent TEST was
TRUE, otherwise it does nothing Note that if TEST has not

Dean run m the same procedure or a superprocsdure. or from
lop levtf

,
JFtftUE does nothing.

Example:

TO QUIZ?
PR IWHO IS THE GREATEST** J

TEST "ME - UPPERCASE HEADWORD
IFTRUE fPR IRIGHT ON) STOP]
PR [NO

p
TRY AGAIN]

QU1Z2
END

'QUI 22
WHO IS THE GREATEST*
GEORGE
NO , TRY AGAIN
WHO IS THE GREATEST''
ME
RIGHT ON

TEST

TEST predicate (command)

TEST remembers whether predicate is TRUE or FALSE tor

subsequent use by IFTRUE or IFFALSE Each TEST t$ local to

the procedure in which It occurs.

Chapter 10 Conditionals and Flow ol Control

Example:

TD 5HDRT0UIZ
PR CHDW ARE YOU 9

3

TEST "FINE - UPPERCASE HEADWORD
IFTRUE [PR [I'M GLAD TO HEAR ITJ1
END

?SHORTQUIZ
HOW ARE YDU*
LOUSY

*SHORTQUIZ
HOW ARE YOU*
FINE
I *M GLAD TO HEAR IT

Interrupting Procedures

The commands tor stopping a procedure, erther temporarily or

permanently, are

CO
OUTPUT
PAUSE
STOP
WAIT

To halt a procedure before It reaches an END statement, use
the STOP and OUTPUT commands. Logo then transfers control

back to the calling procedure (the procedure using It) or to top

level OUTPUT can communicate information to the calling

procedure Note that these commands (STOP and OUTPUT)

halt only the procedure they appear In.

To Interrupt a procedure without permanently stopping ft. use
the PAUSE and WAIT commands. PAUSE applies mainly to

aebuggmg. You can use WAIT for lime-critical code tike

animated graphics.

reaockar PEAQCHAfls Notti Other primitives such as READCHAR READCMAR5.
flfcAousi *ntf headword READLI5T. and HEADWORD also temporarily interrupt«^ 13

procedures

Interrupting Procedures IZB

CO
CO (command)

The CO (for continue) command resumes funning ol a

procedure after a PAUSE or i com not continuing from

wherever the procedure paused.

OUTPUT
OUTPUT oOfect (OP) (command)

The OUTPUT command is meamngtul only when it is wittvn a

procedure, not at top level It ma*es oOfect the output ot your

procedure and returns control to the calter Note thai although

OUTPUT is itself a command, the procedure containing t is an
operation because it has an output Compare with STOP.

Examples;

TO MARK. TWAIN
OUTPUT [SAMUEL CLEMENS 1

END

*PR SE MARK. TWAIN T 1 5 A GREAT AUTHOR]
SAMUEL CLEMENS IS A GREAT AUTHOR

WHICH outputs tho position of an element in a list:

TO WHICH : MEMBER :Ll5T
IF NOT MEMBERP :MEMBER :LIST I OUTPUT Q)
IF : MEMBER - FIRST :LIST I0UTPUT 11

OUTPUT 1 * WHICH : MEMBER Br :LlST
END

''MAKE "VOWELS (A [I Q U)>
'PR
2

WHICH "E : VOWELS

'PR
B

WHICH "U : VOWELS

'PR WHICH "W :V0wELS

Chapter 10: Conditionals and Flow of Control

An imaie **r*on d m* Here is one Munition of the absolute-value operation

*n|r*tt«<*»cno<lt<Briynija*^r» TO ABS :N
H operation m Chapter 9 IT :N < [OUTPUT -:H1 I OUTPUT :Hl

END

PAUSE
PAUSE (command or operation)

The PAUSE command <s meaningful only when rt rs wtthm a

procedure, not al lop level It suspends running of the

procedure and tells you that you are pausing, you can then type

instructions interactively To indicate that you are In a pause

and not at lop level* the piompl character changes to the name

of the procedure you were »n. followed by a que&tton mark,

Dunng a pause* 1 6 K.csc) does not work, the only way to return

to top level during a pause Is to run THROW ~TOPLEVEL

All local variables are accessible dunng a pause See PR MAX
In the following example

The pfocedure may be resumed by typing CO

Example*:

TO WALK :MAX
RT RANDOM 360
FD RANDOM :MAX
PR POS
PAUSE
WALK :MAX
END

^WALK 100

GO, 4109 -»3.947
PAUSING. •

.

WALK''PR HEADING
103
UALOPR iMAX
100
WALK^CQ
68,4381 2. 1059

Interrupting Procedures

STOP
STOP (command)

wnen 11 15 within a pioccdu*e—noi at top level Note mat a
procedure containing STOP is a command Compare STOP with

OUTPUT

Examples:

TO COUNTDOWN :NUM
PR :NUM
IF :NUM [PR [BLAST OFF! J STOP]
COUNTDOWN :NUM - 1

END

^COUNTDOWN 4

4

3

2
1

BLAST OFF!

WAIT

WAIT tefls Logo to wait 'or integer 60ths o! a second.

Example:

The p/ocedure REPORT keeps panting the turtle's positon as it

moves randomly it uses WAIt to give you time to read the
position

TO REPORT
RT 10 1 RANDOM 36
FD tO * RANDOM 10

PR PQS
WAIT 100
REPORT
END

WAIT Mteger [command]

ibSI Chapter 10: Conamonals and Flow of Control

^CS HT
''REPORT

46.9846 72,869
41 .7752 43.3S47

Transferring Control and Repeating Instructions

£** th»* cnaptvT * legfion RON
ta ftiamplM ct lome ccmpte*

This section describes the primitives you use to repeal

instructions and to transfer control to some other instruction

The primitives in this section are

CATCH
ERROR
GO
LABEL
REPEAT
RUN
THROW

Two parrs of primitives left Logo to jump or transfer control to

some other instruction To transfer control to an instruction m
me same procedure, use GO and LABEL. To transfer control to

another procedure, use CATCH and THROW. You can use

CATCH ano THROW to stop an entire program

Repetition can oe done by using REPEAT or a recursive

procedure There are many examples of such procedures

throughout Ihts manual

CATCH
catch nut Af (command)

CATCH runs Art If a THROW name command is called while

tt$t is run, control returns to the first statement alter the

CATCH The name is used to match up a THROW with a

CATCH For instance, CATCH "CHAtR | whatever
| catches a

THROW CHAIR but not a THROW TABLE.

Transferring Control and Repeating instructions

There is one special case CATCH "ERROR catches an error
thai wouk] otherwise print an error message and return to top
level ft an error ts caught the message mat Logo would
normally prlni isn't printed See the explanation of ERROR in
this chapter to find out how to ten what the mo* was.

Example*!

The procedure SNAKE reads numbers typed in toy you. and
uses them as distances lo move the turtle. It turns the turtle
between moves It you tyue something other man a number, the
program (using Us READNUM subprocedure) prints an
appropriate message and continues working.

TD 5NAKE (supefpiocedure)
CATCH "NDTHUM 1SLITHERJ
SNAKE
END

TD SLITHER (subprocedure)
PR r TYPE n NUMBER » PLEASE .

]

FD READNUM
RT 10

END

TO READNUM (subprocedure)
LOCAL "LINE
Mftfcc -*l I nc Kt«UL i b I

tf NOT HUMBERP FIRST : L JNE [PR I THAT'S !

NOT A NUMBER.) THROW "N0TNUM1
IF NOT EMPTYP BF : L I NE tPR t DHL Y ONE NU1
MBER, PLEASE] THROW "NOTNUM]
OUTPUT FIRST ;LINE
END

Notice that STOP m place of THROW NOTNUM would have
returned to SLITHER, not to SNAKE

Chapw 10: Conditionals and Flow ol Contra

The procedure DOIT runs instructions typed in by you. When an
error occurs, Logo does noi display the standard error message
and does not return to top level; Instead. it displays THAT
STATEMENT IS INCORRECT and lets you continue typing

instructions.

TO DO I

T

CATCH "ERROR [DDI T 1

1

PR [THAT STATEMENT IS INC0RRECT1
DO IT
END

TO D0IT1
RUN READL 1ST

DO IT!
END

*D0IT
PR 3 • 5
8
PR12 - 7

THAT STATEMENT IS INCORRECT
PR 12 - 7
5
THROW "TDPLEVEL

ERROR
ERROR (Opefation)

ERROR outputs a four-element liSl containing information about

the most feceni error that has not nad a message printed or

Appwu*. a hat i cardie hsi t>i
0utPut °V ERROR tl there was no such error. ERROR outputs

wv "i*w» **o m#*t mwHi>&* the empty list The elements »n the list are

• a unique number identifying the error

a message MptaMng the error

• the name of the primitive causing the error, if any

• the name o f the procedure wimm which the error occurred

(the empty list, *l top level)

Transferring Control and Repeating Instructions

Logo runs THROW "ERROR whenever on enor occurs during

the execution of a procedure Control passes 10 top level unless

a CATCH ERROR has oeen run When an error is caught in

mis way* no enor message *s primed, and you can design your

own

Eiample;

TO SAFESQUARE : S I DE
CATCH "ERROR t REPEAT A TFD tSlDE RT 901!
STOP)
PR ERROR
END

''SAFESQUARE "SJX1NCHES
41 t FORWARD DOESN'T LIKE S I X INCHES A5 1!

NPUT1 FD SAFESQUARE

SAFESQUARE runs CATCH
HERROR and prints ERROR it an

error occurs You can modify the procedure !o print your own
error message.

TO SAFESQUARE :SIDE
CATCH "ERROR (REPEAT 4 IFD r S I DE RT 90M
STOP]
PR (OOPS, A BUG*

1

END

^SAFESQUARE "SIX
OOPS , A BUG!

GO
GO word (command)

Tne GO command transfers control to Uie instruction foflowing

LABEL word in the same procedure.

Chapter 10: Condrtlonals and Row of Control

Eit-implo:

TO COUNTDOWN :N
LABEL "LOOP
IF : N < [STOP1
PRINT :N
MAKE "N s N - I

GO "LOOP
END

LABEL

LABEL word (command)

s*r mum *go The LABEL command »tse*f does nothing However a GO word
passes control to ihe instruction following it. Note thai word
most always oe o literal word (that is, it must be preceded Oy a

quotation mar*)

REPEAT
REPEAT integer Itst (command)

REPEAT runs tost mteger limes An error occurs <f integer is

negative

Examples;

REPEAT 4 if D 100 RT 90 1 draws a square 100 lunle

steps on a side.

REPEAT 3 ITD 100 RT 90 1 draws three quarters of a

square

RUN
RUN hst (command or operation

)

Th<< RUN command runs Ust as ll tvpM in directly II Wf*s an
opiTMttl t»ien RUN outputs whatever outputs.

Examples:

TO CALCULATOR
PR RUN READLI5T
PR [J
CALCULATOR
END

''CALCULATOR
2 3
5

17.5 * 3

52 . 5

« • a • 7

FALSE

REMAINDER 12 5
2

The WHILE procedure iuns a list of instructions white a
SDoolied condition ts true
ftpBCttWd condition *5 true:

TO WHILE CONDITION :L1ST
TEST RUN CONDITION
IFFALSE IST0P1
RUN -LIST
UHILF :COHDITIDN ;L15T
END

*>RT 10
AWHILE rXCOR < 100) (f D 25 PR POS1

The following piocedure applies a command to each element of

a Msl in turn

TO MAP iCMD :L 1ST
IF EMPTYP :LIST [ST0P1
RUN LIST :CMD WORD M" FIRST :LIST
MAP :CMD BF : L 1 ST
END

Chapter JO Conditional* and Flow of Control

TO SQUARE :SIDE
REPEAT 4 [FD :51DE RT 90

1

END
^MAP "SQUARE no 20 40 BO)

MA£ "NEW. ENGLAND 1 ME NH VT MA Rl CT J

*MAP "PRINT : NEU. ENGLAND
PIE

NH
VT
MA

RI
CT

The following pfDHdllNi FOREVER repeals its input 1o*ever

(unless *t nils an error or »s slopped wilftid Hjtscj)

TO FOREVER :LIST
RUN :LIST
FOREVER :LI5T
END

The command FOREVER
draw a circle

[FD 1 RT 1] tells tne turtle to

The command FOREVER IPR RUN READLI5T PR Ml
equivalent to the CALCULATOR procedure delined above

The procedure SAFE SQUARE draws a square and then

restores the pen type to whatever ft was previously

TO SAFE, SQUARE
MAKE "SAVETVPE PEN
PENDOUN

Transferring Control and Repeating Instructions

SQUARE 100
RUN CSE :5AVETYPE>
END

TQ SQUARE cLEN
REPEAT 4 CFD : LEN RT 90)
END

^SHQW PEN
PENUP
1 5AFE . SQUARE
*5HDW PEN
PENUP

RUN READL] ST runs any commands you type in.

PRINT RUN READL I ST prints the output from any
expression you typed in.

THROW
THROW name (command)

aw Miicm 'Catch/ The THROW command is meaningful only within the range ol

the CATCH command. An error occurs it no corresponding
CATCH name is lound.

THROW "TQPLEVEL returns control lo top level. Contrast with

STOP

Debugging Programs

You use the primitives <n this section to analyze and debug
programs The pnmitrves are

STEP
TRACE
UNSTEP
UNTRACE

140 Chapter 10; Conditionals and Flow of Control

STEP
STEP nametust) (command)

The STEP command lakes the procedure indicated by nametfisti

as mpui and lets you run them line by une STEP pauses at

each line of execution and continues only when you press any

key on the keyboard.

Examples!

TO TRIAN0LE :W0RD
IF EMPTYP :WQRD (ST0P1
PR : WORD
TRIANGLE BL iWQRD
END

*>STEP "TRIANGLE
^TRIANGLE "IT
IF EMPTYP :WQRD You press any key.

[STOP]

PR : WORD You press any key

IT
TRIANGLE BL ; WORD You press any key.

IF EMPTYP :UfJRD You press any key.

[STOP]

PR :UORD You press any key.

I

TRIANGLE BL :WORD You press any key.

IF EMPTYP : WORD You press any key.

CSTDP)

TRACE
TRACE rMMtybQ (command)

The TRACE command takes the procedures indicated by

namflfisr) as input and causes them lo print tracing information

when executed tt does not interrupt the execution of the

procedure, but allows you to see the depth of the procedure

stack during execution TRACE is useful m understanding

recursive procedures or complex programs with many
suoproceflures.

Examples:

*P0PS
TO COUNTUP :N
IF ;N * 10 ISTDP1
COUNTUP :N * 1

PR ;N
END
*TRACE "COUNTUP
^COUNTUP S
COUNTUP S
COUNTUP 6
COUNTUP 7
COUNTUP B
COUNTUP 9
COUNTUP 10
COUNTUP stopped

9
COUNTUP stopped

e
COUNTUP stopped

7

COUNTUP stopped
6

COUNTUP stopped
S
CQUHTUP stopped

T

Chapter 10 ConcWKxiois and Flow ol Control

UN5TEP
UNSTEP name(hsH (command)

UNSTEP restores the procedure(s) indicated by narnefbst) back

to their original states After you step through a procodure {with

STEP), you must use UNSTEP so that it will execute normatly

again

Examples:

''UNSTEP "TRIANGLE
''TRIANGLE "IT
IT
I

UNTRACE
UNTRACE namefUst) (command)

UNTRACE stops the tracing of procedure name and causes it

to execute normally again.

Examples:

''UNTRACE "CQUHTUP
7C0UHTUP 5

9
a
;

6
5

1

Doouggmg Programs

I Special Control Characters

The special characters in this section Interrupt Logo s flow of

control either temporarily or permanently

OPEN APPLE-ESC

loHjscl (special character)

Pressing
(dK.Esc) immediately slops whatever is running,

returnrng Logo to lop level, unless m a pause mode

CONTROL W
icowtwplKw) (special character)

Pressing LQwrnoLj-fwi interrupts whatever is running Typing

any character resumes normal execution This special character

is particularly useful m giving yourself time to read when Logo
ta displaying more than one screenful ot information

CONTROL-Z
IcowtwolKS (special character)

Pressing {cowraot HT) inlerrupts whatever is runmng, causing a

pause. (control UD ks equivalent In effect to PAUSE, but

different in its use. you press fcoMrftgi>fy) at the keyboard

dunng the running of a procedure, while PAUSE rs part oi the

defmmon ot a procedure

Chapter 10: Conditionals and Flow of Control

Modifying Procedures Under Program
Control

148 COPVDEF
148 DEFINE
150 DEFlNEDP
150 PRIMITIVEP
151 TEXT

Cnapier 1 1 Modifying Procedures

D

m

This chapter explains the feature ot Logo that allows you to

wnte procedures mat ddfine and modify other procedures The
primitives for this feature are

COPYDEF
DEFINE
DEF1NEOP
PRIM1T1VEP
TEXT

You use the DEFINE and TEXT primitives to define and modify

procedures within other procedures DEFINE changes a list of

instructions into a procedure. TEXT works the other way
around, changing a procedure into a (M, The list can be
modified, using the Us\ manipulation techniques described In

Chapter 7.

You can use the same list manipulation techniques to create a

completely new list. DEFINE then stores it as a procedure In

your workspace. Note that if you want to execute this I>&1 but

An ortinron ot ruh meir* m don * w*nt » keep it m your workspace, you should use RUN
Chapatr 10 instead of DEFINE

PRIMITIVEP and DEFINEDP leit you if a procedure name
already exists. They can be useful m writing debugging

programs and In avoiding certain error conditions.

COPYDEF creates a copy oi a procedure under a new name

You m*ghi want to use COPYDEF to create a backup copy of a

procedure, because DEFINE can accidentally destroy an

existing procedure.

Chapter 11: Modifying Procedures

I COPYDEF

DEFINE

COPYDEF name newn$me (command)

COPYDEF coptes the definition ol name, making R me definition

ot newnarne as well.

Examples:

COPYDEF "SQUARE "HEWSOUARE gives NEUSQUARE the

same definition as SQUARE

COPYDEF "FORWARD "F gives F the same definition

as FORWARD

DEFINE name W (command)

DEFINE makes Asf the definition of the procedure name The
first element ot nst is a list ol the inputs to name* with no
colon

() before the names

ii name has no inputs, this must be the empty list Each
subsequent element is a list consisting of one line of the

procedure definition (This list does not contain END, because
END *5 not part of the procedure definition.)

Tho second Input to DEFINE has Ihe same form as the output
from TEXT DEFINE can redefine an existing procedure

Examples:

DEFINE "SQUARE ttSIDEl f REPEAT 4 [FD :S!
IDE RT 90)11

defines the same procedure as

TO SQUARE :SIDE
REPEAT 4 CFD eSIDE RT 901
END

LEARN is a program that lets you type successive lines defining

a procedure thai has no inputs. Each time you press
i

Logo runs the instruction as well as making it part of the
procedure definition. By typing ERASE, you can erase the

previous line

Chapter 11: Modifying Procedures

TQ LEARN
MAKE "PRO (111
BEADLINES
PR (DO VQU WANT TO SAVE THIS AS THE DEF »

I N I T I OH OF A PROCEDURE 1
)

TESTC F I RST FIRST READL 1ST)" "Y
IFT [TYPE [PROCEDURE NAME') DEFINE FIRS'
T READL I 5T :PR01
END

TD READL i NE5
HAKE "NEXTLINE READL 1ST
IF : NEXTL I NE (EHDJ (STOP1
TEST : NEXTL 1 HE - (ERASE!
I FTRUE [CANCEL 1

IFFALSE [RUN :HE*TLINE MAKE "PRO LPUT i!

NEXTL 1 HE :PRQ1
HEADLINES
EHD

TO CANCEL
PR SE (I MILL ERASE LINE) LAST : PRO
MAKE "PRO BL :PRO
END

^LEARN
FD 20
RT 36
ERASE
I WILL ERASE LINE RT 36
RT 72
END
DO YOU WANT TD SAVE THIS AS THE DEF I N I T

I

ION OF A PROCEDURE'
YES
PROCEDURE NAHE'LEO

DEF ME

7PD "LEG
TO LEG
FD 20
RT 72
END

r

DEFINEDP

DEFINED? word (operation)

PRIMITIVEP

DEFlNEP outputs TRUE if word is the name ol a user-defined

p'ocedure. FALSE otherwise.

PRIMITIVEP name :-..*.
: t EMI]

PRIMITIVEP outputs TRUE if name <s ttie name ol a primitive.

FALSE otherwise

Examples:

Operation Output

PRtMITIVEP FORWARD TRUE

PRIMITIVEP 'SQUARE FALSE

Chapter 1 1 Modityir>g Procedures

TEXT name (operation)

The TEXT ptlmrllve oulpuis the definition of name as a list of

lists, suitable tor input to OEFINE

Example:

''SHOW TEXT "POLY
[[SIDE ANGLE) I FD :SIDE RT : ANGLE I [POL!
Y :SIDE : ANGLE 1

1

The first element of iho output is a list of the names of the

procedure's inputs The rest of the elements are lists, each one
is a line in the procedure definition. (If me procedure name Is

undefined. TEXT outputs the empty list) The previous example
corresponds to:

?P0 "POLY
TO POLY :5IDE : ANGLE
FD :SIDE RT : ANGLE
POLY :SIDE : ANGLE
END

You can use TEXT in conjunction with DEFINE lo create

procedures that modify other procedures. Here is a simple

example:

->PD "SQUARE
TO SQUARE
REPEAT 4 IFD 30 RT 901
END
"'DEFINE "SQUARE. WITH. TAIL LPUT [FD 1001'
TEXT "SQUARE

•>PD "SQUARE. WITH. TAIL
TO SQUARE. WITH. TA(L
REPEAT 4 (FD 30 RT 901
FD 100
END

TEXT

Complex Example:

itirutwe -.Tit- i imcK* m T hp proceJu"j m II' is examp f notices me dolinmon OT
c*ipi»i to. a procedure to make it run one line at a time The procedure

SSTEP is similar to the primitive STEP. The example is included

to show you how 10 modify a procedure definition.

After each tine is run. Logo waits for you to press (WEnjrtO

before II proceeds. SUNSTEP restores the original procedure
definition.

The Program:

TO SSTEP :P»0
CDPVDEF :PRQ WORD ;PR0
MAKE "DLDDEF TEXT :PR0
MAKE "NEWDEF CL1ST FIRST : DLDDEF

)

MAKE "NEWDEF LPUT <LI5T "PRINT <L15T ME

>

NTER1NG :PR01> :t*EWDEF
SHOWIHPUTS FIRST : DLDDEF
SNOWLINES BF :Ql_DDEF
DEF INE :PRD ;NEWDEF
END

TD IGNORE iIHPUTT
END

TO STEPPER
TYPE *

IGNORE READLIST
END

Chapter II: Modifying Procedures

TO SHOWLlNES INSTRUCTIONS
IF EMPTYP : INSTRUCTIONS ISTOP1
MAKE "NEUDEF LPUT (LIST "TYPE FIRST :IN!
STRUCTIONS> :NEWDEF
MAKE "NEWDEF LPUT I STEPPER 1 : NEUDEF
MAKE "NEWDEF LPUT FIRST INSTRUCTIONS :!

NEWDEF
SHOWLlNES BF INSTRUCTIONS
END

TO SH0W1NPUTS :ARGL I ST
IF EMPTVP :ARCL 1ST ISTOPJ
MAKE "NEWDEF LPUT (LIST "PRINT "5ENTENC

!

E (LIST (FIRST :AROLlST) "15> (WORD ":!

FIRST :ARGLIST>> : NEWDEF
SHOWINPUTS BF :ARGL I ST
END

TO tUNSTEP :PRO
COPVDEF WORD ". :PRO :PRO
ERASE WORD ». :PRO
END

TEXT

Using the Program;

TO TRIANGLE : WORD
IF EMPTYP :WORD T STOP

]

PR :W0HD
TRIANGLE BL :WORD
END

^ISTEP "TRIANGLE
^TR I ANGLE "IT
ENTERING TRIANGLE
WORD 15 IT
IF EMPTYP ;WORD CSTOP1

PR :WDRD
IT
TRIANGLE BL : WORD
ENTERING TRIANGLE
WORD IS 1

IF EMPTYP : WORD CSTQP]

PR ;WORD
I

TRIANGLE BL :WORD
ENTERING TRIANGLE
WORD IS
IF EMPTYP :WORD CSTOP1

YOU PfWS flgnjRfn

YOU pfMS I RETURN!

You press Return")

You pfttft (attufmi

You press CffiSH)

You press (nenwp

Chapter 11 Moditying Procedures

Logical Operations

158 AND
159 NOT
160 OR

Chapter 12: Logical Operations

ore op»aiiorr% thai This chapter describes the kjgical operations AND, NOT. and
output cnty true of falS£ Moil QR. A logical operation is a predicate whose input must be
* *** md m 9

either TRUE or FALSE

The inputs to logical operations are usually other predicates,

Predicates are found throughout the other chapters of this

manual

Predicate Chapter

BEFOREP 7

BUTTONP 13
OEFINEDP "
DOTP 5

EMPTVP 7

EOUALP 7

FILEP 15

KEYP 13

LtSTP 7

MEMBER? 7
NAMEP 8
NUMBERP 7
PRIMIIIVEP 11

SHOWNP 5
WORDP 7

9

9

> 9

Chapter 12: Logical Operations

AND predicate' predicate?

(AND predtcatei predicate? pred<cate3)

(operation)

AND outputs TRUE if all its inputs are true, FALSE otherwise

Examples;

Operation Output

AND TRUE TRUE TRUE

AND TRUE 'FALSE FALSE

AND 'FALSE "FALSE FALSE

(AND TRUE 'TRUE "FALSE FALSE
TRUE)

AND 5 7 Error

AND PENCOLOR-1 FALSE
BACKGROUND -0
(when you start up Logo)

The following procedure, DECIMAlp. tells whetner lis input <s

decimal number.

TO DECIMALP iOBJ
OUTPUT AND NUMBERP :0BJ MEMBERP : OBJ
END

?PR DECIMALP 17
FALSE
?PR DECIMALP 17.

TRUE
*PR DECIMALP "STOP

.

FALSE

The following procedure tefls you whether the temperature is

comfortable {between 50 and 90 degrees F):

TO COMFORT
IF AND : TEMPERATURE > 50 : TEMPERATURE <!

90 [PR "DELIGHTFUL! [PR "UNPLEASANT]
END

Chapter 1? Logical Operations

'MAKE "TEMPERATURE 68
'COMFORT
DELIGHTFUL

NOT

NOT predicate (.operation)

NOT outputs TRUE if predicate is FALSE, it predicate is TRUE,
NOT outputs FALSE

Eiamples:

Operation Output

NOT EQUALP "A "B TRUE

NOT EQUALP "A 'A FALSE

NOT "A - FIRST 0OG TRUE

NOT "A Error

it WORDP were not a primitive, it could be defined as toilows

TO WORDP :OBJ
OUTPUT NOT LI5TP : OBJ
END

The loltowmg procedure tells wnomer its input is a word mat

isn I a numper:

TO REALWORDP :0BJ
OUTPUT AND WORDP : OBJ HOT NUMBERP :0BJ
END

'PR REALWORDP HEADING
FALSE
'PR REALWORDP PDS
FALSE
'PR REALWORDP "KANGAROO
TRUE
'PR REALWORDP PEN
TRUE

NOT ri59

OR prea>catel pteatcate?

(OR pn&tcatet predKxtel pr&t<cate3
)

i-iwrai on]

OR outputs FALSE <f all its inputs are false, otherwise it outputs

TRUE,

Examples:

Operation Output

OR TRUE TRUE TRUE

OR TRUE "FALSE TRUE

OR TALSE ^FALSE FALSE

(OR "FALSE "FALSE FALSE TRUE
TRUE)

OR 5 7 Error

The procedure MOUNTAINS draws mountains:

TO MOUNTAINS
SETPC 5

RT 45
FD 5
SUBMDUNTAIN
END

TO SUBMtJUNTAIN
FD 5 * RANDOM 10
IF OR YCOR > SQ VCOR < D I SETHEADI NG 1!

90 - HE AD I NO

)

SUBMOUNTA I

N

END

Chapter 12 Logical Operations

The Outside World

163 Using Paddles

163 BUTTONP
164 PADDLE
164 Making Logo Road Information

164 KEVP
166 READCHAR
166 READCHARS
167 READUST
167 READWORD
166 Makmg Logo Wrap (nformabon

169 PRINT
170 SHOW
170 TYPE
171 Making Sounds Wifh TOOT

Cnapter 13 The Outside World

PI

This chapter describes primitives for communicating w*lh

various dev+ces through the computer. The devices include the

keyooard, the television set and the game paddtos The

pfiminyes §re defied img four i
f9ap?

• primitives tor using paddies

e primitives lor making Logo read information

primitives tor making Logo write information

• a primitive tor making sounds,

I Using Paddles

Thrs section describes the BUTTONP and PADDLE primitives,

which communicate information from the paddle, or hand

control

BUTTONP
BUTTONP paMteoumber (operation)

BUTTONP outputs TRUE it the button on the speeded paodie

Is down and FALSE if the button rs up The paddtenumoer must

be 0. i 2 OR 3 o is button and l a)
is button i

Using Paddies

PADDLE
PADDLE paffllenomber (operation)

PADDLE outputs a number between and 255, representing

the rotation of the dial on me specilKJd paddle.

Example:

TO PDRAU
RIGHT (PADDLE 0> /

FORWARD (PADDLE t> / 25.6
PDRAW
END

Making Logo Read Information

flEApCHAfl RtAOCHARS
REA0U5T end HEADWORD are

Ne-^irmtrg wittn ontribed *i

ChAjwi* t5 *nd 16

This presents trie primitives that you use to make Logo
read information from a device or a file Normally this device Is

the keyboard The primitives are

KEVP
READCHAR
READCHARS
READLIST
READWORD

The operations READCHAR. READCHARS, REAOUST, and
HEADWORD let Logo read leil thai has been typed into the

keyboard KEYP is a keyboard predicate mainly useful in game
situations.

KEYP
KEYP (operation)

KEYP outputs TRUE if there is ai least one character waiting to

to read—that is, one that has been typed on the keyboard and
not yet p*cked up by READCHAR or flEADUST KEYP outputs
FALSE <f there are no sucn characters*

Chapter 13: The Outside World

Example:

TD STEER
FD 2
IF KEYP [TURN READCHAR]
STEER
END

TO TURN :DIR
IF :DIR • "R CRT 101

IF :DIR • "L [LT 101

END

READCHAR
BEADCHAR (RC) (operation)

READCHAR outputs th« first character typed at the keyboard or

read from the current hie. If you are reading from the keyboard

and no character is waiting to Dc read* READCHAR watts until

you type something.

READCHAR does not output a character it you are reading from

a Me and the etid*oMiie position ts reached In (his case,

s« aiao section "KEvp/ READCHAR outputs an empty list Note that READCHAR from

the keyboard does not echo what you type on the screen.

If you are reading from the keyboard, you con set the high bit

of the character being read by hokJmg down either Apple hey as

you type the character Setting the high bit adds 128 to the

character.

The following procedure. XYZZY, lets you run certain

commands with a single keystroke: (T) does FORWARD 5 t
and

® does RIGHT to. (You can add to the list) You need not

press fwrtuiw) after the keystroke

TO XVZZY
INTERPRET READCHAR
XYZZV
END

TO INTERPRET : CHAR
[F : CHAR * »F t FD 5)
IF ; CHAR - »R [RT 101

IF ; CHAR * "5 ITHROU "T0PLEVEL1
END

Making Logo Read Information

READCHARS
READCHARS integer (RCS) (operation!

The READCHARS operation outputs the first integer number of

characters typed at the keyboard or read from the current fi*e. It

you are reading trom the keyboard and no characters are

waiting to be read. READCHARS wans for you to type

something,

I' you are reading from a file and the end-oMile position Is

reached before integer characters are read. READCHARS
outputs the characters read up to that pomt It the end-oMile

position was reached before READCHARS was called,

READCHARS outputs an empty list

Note that READCHARS from the keyboard does not echo what

you type on the screen

Remember mat a carnage return i& read as a character

if you are reading from tne keyboard, you can set the high bit

of the character being read by holding down either Apple key as

you type the character Setting the high on adds 128 to the

character

Example:

SPRINT READCHARS A

Type the following letters:

ABC (Don't press (^TURfi})

Nothing happens. Now type

D

The following appears on the screen:

ABCD

Chapter 13: The Outside World

READUST
READU3T |RL) (operation)

The READLIST operation reads a line of information from the

current file and outputs the information m the form o! a Irst

Normally, the source is the keyboard, where you type in

information followed by a carnage return this information la

echoed on the screen The command SETREAD allows you to

read from othef hies

if yon are reading from a die where (he end-oMite position has

already been reached REAOUST outputs the empty word.

Examples:

SPRINT COUNT READLI5T
I HOPE THI5 REALLY WORKS
5

TO GET USER
PRINT [WHAT IS VDUR NAME'

1

MAKE "USER RE AOL I 5T
PRINT SE t WELCOME TO LOGO,) ;USER
ENO

''GET-USER
WHAT IS VDUR NAME?
EFFIE
WELCOME TO LOGO, EFFIE
''GET. USER
WHAT IS YOUR NAME'
EFFIE MAN I AT I 5
WELCOME TO LOGO, EFFIE MAN I AT I

S

READWORD
READWORD (RW) (operation)

READWORD reads a line ol information from the current file

and outputs it as a word Normally the source ls the Keyboard*

and READWORD wails for you to type and press { rerun'tO*

Wnat you type is echoed on the screen. It you press tBtriittwl

before typing a word. READWORD outputs an empty word

Making Low Read Information

It you use HEADWORD from a Me HEADWORD reads

characters until it reaches a carriage reiurn, and outputs those

characters as a word. The next character to be read ts the one
after the carriage return. When the end-oMrle position is

reached. HEADWORD outputs an empty list.

Examples:

^SHOU READWORD
LONDON QNTARID
LONDON ONTARIO

"'PRINT COUNT HEADWORD
THERE IS SOME VALUE IN COUNTINC WORDS
37

The following procedure asks your age and then prints how old

you will De next year

TO AGE
PRINT [HQW OLD ARE YOU 1

)

PRINT MESSAGE HEADWORD
END

TO MESSAGE : AGE
OP SE IHEXT YEAR YDU WILL BE) : AGE * 1

END

7AGE
HQW OLD ARE YOU*
1 1

NEXT YEAR YOU WILL BE 12

*AGE
HOW OLD ARE YOU'
35
NEXT YEAR YOU WILL BE 36

H Making Logo Write Information

This secton presents the primitives that you use to make Logo
wnte information lo a destination such as the screen. The
primitives are

PRINT
SHOW
TYPE

5e* **CK*1» "READUST.
HE4DCMAR READCHARS 4"d
SETREAO*

Tsil Chapter 13 The Outside World

PRINT
PRINT object (PR) (command)
(PRINT object! otofect2)

The PRINT command prints its inputs followed by a carriage

return on Uie screen, unless the destination has been changed

by SETWRITE The outermost brackets of lists are not printed

Compare with TYPE and SHOW.

EnmptNi
*PR I NT "A
A
*PRINT "A PRINT (A B CI
A

ABC
SPRINT »A Ifl 8 CD
A ABC
SPRINT [)

TO REPRINT ;MESSAGE ;HOWMANY
IF : HOWMANY c 1 [STOP]
PR : MESSAGE
PR
REPRINT : MESSAGE iHQWMANY-

I

END

PREPRINT [TODAY IS FRIDAY!! *

TODAY 15 FRIDAY!

TODAY IS FRIDAY!

TODAY IS FRIDAY!

TODAY IS FRIDAY!

Making Logo Write lnformat*on

SHOW
SHOW oOfect {commarxJ)

The SHOW command prints QD/oct followed by a carnage return

on the screen unless the destination has been changed by

SETWRITE if ob/oct is a list. Logo leaves brackets around It

Compare with TYPE and PRINT.

Examptosi

->$HQU "A
A
^SHQW "A SHOW (A B CI
A
tA 8 CI

TYPE
TYPE oO/ecr (command)
(TYPE oo/ectl otyecti^)

The TYPE command prints «5 inputs without a carriage return

on the screen, unless the destination has been changed by

SETWRITE. The outermost brackets of lists are not printed.

Compare with PRINT and SHOW.

Examples:

*TYPE "A
A ''TYPE "A TYPE CA B C]
AA B CCTYPE "A rA B CJ>
AA B C?

Cnapter 13: The Outm Wond

Hie proceduiD PROMPT types a message followed by a space

TQ PROMPT : MESSAGE
TYPE jMESSAOE
TYPE CHftR 32
END

TO MOVE
PROMPT [HOW MANY STEPS SHOULD I TAKE*

)

FD FIRST READLIST
MOVE
END

^MDVE
HOW MANY STEPS SHOULD 1 TAKE* SO
HOW MANY STEPS SHOULD I TAKE * 37
HOW MANY STEPS SHOULD I TAKE* 2

HOW MANY STEPS SHOULD I TAKE* 108

Making Sounds With TOOT

TOOT frequency duration (command)

TOOT generates a tone via a loudspeaker The frequency is

specified in Herte (cycles per second) The tuning note A is 440

The duration can range from to 65,535. It *9 measured »n units

of 1:60 of a second

Eiampk:

TO SIREM : f REQ
IF ;FRE0 > 440 [STOP

)

TOOT :FREQ 3

SIREN : FREQ • S

TOOT rFREQ 3

END

SIREN produces a siren sound ol ascending and descending

notes.

TaD*e 13-1 provides the frequencies of approximately seven

octaves of notes

Making Sounds With TOOT

table tj-i Mire /reouenciej to TOOT

Note Frequency, by Octave

A

G#

G

F#

F

F

D#

D

C#

C

62 123 247 494 988 1973 MMfl

58 117 233 466 932 1864 3743

55 110 220 440 881 1761 3510

52 104 208 415 830 1663 3327

49 98 196 392 784 1566 3142

46 92 185 370 740 1480 2959

' ' 87 175 349 698 1398 2797

82 165 330 659 1319 2637

39 78 1S6 311 622 1244 2495 4990

37 73 147 294 587 1176 2346 4713

35 69 139 277 554 1109 2213 4426

33 65 131 262

MtOO* C

523 1047 2095 4172

Cnapier 13 The 0uts*0e Woikj

Managing Your Workspace
176 Sizing Up Your Workspace
176 NODES
177 RECYCLE
177 Priming From the Workspace

177 PO
178 POALL
178 PON
179 PONS
179 POPS
180 POT
180 POTS
180 Erasing From the Workspace
181 ERALL
181 ERASE
181 ERN
181 ERNS
182 ERPS
182 Cleaning ana Organizing the Workspace
182 BURY
183 BURYALL
183 BURYNAME
184 UNBURY
184 UNBURYALL
185 UNBURYNAME

Chapter 14 Managing Your Workspace 173

o

H

This chapter tells you how to manage the workspace tn your

Apple computer Workspace ($ an area of the Apple
1

* memory
where Logo Keeps your procedures, variables and properties

that it knows aboul nght now. It does not include primitives,

Logo provtdes primitives to lei you

eiamine the sue of your workspace and tree up additional

space there

• see what you have in your workspace

• selectively erase variables and procedures trom your

workspace

• dean up and organize your workspace.

The workspace is a temporary storage space. Your procedures.

variables, and properties win oe erased when you turn oft the

s« erupts* 15 tno is ioi
power of the computer ir you want to keep them lor future use.

mlormibon on f*w you must slofe them on a disk in the form of files.

Procedures and names in the workspace can be buried, making
them invisible to global commands such as ERALL ERPS,
POALL POPS, POTS, and SAVE A burfed procedure or name
sllll ensts in ihe workspace. Therefore, you can run. edit, print

out. or erase a buried procedure, as long as you specify Its

name.

Tne Duty laolily rs useful for organizing your workspace. You
can use it to selectively save procedures in different files. You
can also use the bury facility to make procedures appear as

primitives. For instance, you may want some of the procedures

m Appendix B, Useful Tools* to be tiuoed in the workspace

Chapter 14 Managing vouf Workspace 175

Here is an example of how to organize your workspace

'POTS
TO 5ENGEN :NQUNS :VERS5
TQ PICK : OBJECT
TD SUPERSENGEN
TD POLY iSIDE i ANGLE
TO PDLVSPI IDE : ANGLE : I NC
TD SO :5IDE
TD TRIANGULATE :W0RD

''PONS
MAKE "NOUNS [COMPUTERS HOUSES BEDS CHAI!
R5 TV 5TERE0J
MAKE "VERBS t PLAY COMPUTE LIE SIT (FALL!
DOWN 11

MAKE "START HEADING

You can group the procedures and variables by giving them
names

''MAKE "LANGUAGE tSENGEN PICK SUPERSENGEN

)

•>MAKE "LANGNAMES I NOUNS VERBS)

Now use Ihe bury feature to save mem in a Tile

7BURVALL
•>UNBURY : LANGUAGE
^UNBURYNAME : LANGNAMES
•>SAVE "LANGUAGE

B Sizing Up Your Workspace

You use the primitives in this sec!>on to hgu'e out how much
free spec* you have m your workspace (NODES) and to tree up
as much workspace as possible (RECYCLE),

NODES
NODES (operation)

NODES outputs the number of tree nodes. This gives you an

sao Appano* o. u*nc*y S(m» idea ot how much space you have m your workspace for

procedures. vanowos. properties, and the runrong of

pfocedutes NODES is most useful 11 run immediately after

RECYCLE

Chapter 14 Managing Your Workspace

RECYCLE
RECYCLE (command)

The RECYCLE command frees up as many nodes as possible,

performing what is called a garbage cottection. When you don't

use RECYCLE, garbage collections happen automatically

s*e vKTxn -nodes' and «ito whenever necessary, but each one takes at least one second.
Aw«*du D Memory space Running RECYCLE before a time-dependent activity prevents

the automatic garbage collector from slowing things down at an
awkward time

Printing From the Workspace

Tfils section tails you flow to print the contents of your

workspace. The primitives to use for this are

PO
POALL
PON
PONS
POPS
POT
POTS

PO
PO name()istf (command)

The PO (for print out) command prints the defimtion(s) of the

named procedure^-

Examples:

^PD "LENGTH
TD LENGTH : OBJ
IF EMPTYP :QBJ tDP 0) [QP 1 * LENGTH BF

!

lOBJ]
END
*>P0 [LENGTH GREET)
TO LENGTH : OBJ
IF EMPTYP :DBJ [DP 01 [DP 1 • LENGTH BF •

:0BJ1
END

Printing From the Workspace

TD GREET
PR C GOOD MORNING. HOW ARE YQU TODAY 7

]

END

POALL
POALL (command)

The POALL (lor print out all) command prints the definition ol

Sep **ci*o* tUftf lor
every procedure and the value ol every vartable in the

tiovuins workspace

Example:

*>POALL
TO POLY :5IDE : ANGLE
FD :SIDE
RT :ANGLE
POLY rSIDE : ANGLE
END

TO LENGTH :OBJ
IF EMPTYP :OBJ t DP 01 [OP 1 * LENGTH BF *

i OBJ J

END

TD GREET
PR [GOOD MORNING. HOW ARE YOU TODAY** 1

END

TO SPI ;5IDE : ANGLE : 1 NC
FD :SIDE
RT :ANGLE
SPI :SIDE * : INC : ANGLE : INC
END

MAKE "ANIMAL "AARDVARK
MAKE "LENGTH 3.98
MAKE "MYNAME "STEVE

POM
PON namethst/ (command)

PON (for print out name) pnnts me name and value ol me
named vanatW*!

1781 Cnapter 14: Managing Your Workspace

Examples:

7PDH "LENOTH
MAKE "LENGTH 3.9B
^PDN : LANGNAMES
MAKE "NOUNS (COMPUTERS HOUSES BEDS CHAH
RS TV STEREO!

MAKE "VERBS (PLAY COMPUTE LIE SIT t FALL

•

DOWN 1

]

PONS
PONS (command)

PONS (lor print out names) prints the name anc value of every

vanaDle m the workspace

Example:

''PONS
MAKE *F 3
MAKE "LIST CA B CI

POPS
POPS (command)

Soe wction burv fc* POPS (for print out procedures) prints trw definition ol every

«pofpuo^ procedure in the workspace

Example:

'POPS
TO POLY rSIDE tANGLE
FD :SIDE
RT : ANGLE
POLY :SIDE :ANGLE
END

TO SPI :SIDE :ANGLE ; INC
FD :5IDE
RT :ANGLE
SPI :SIDE • :INC : ANGLE :INC
END

Printing From the Workspace

POT
POT name[h$t} (command)

The POT (lor pnm out title) command prints the title line ot the
named procedures) in the workspace.

Example:

You may want to group some proceduics Dy giving them a
variable name

'MAKE "LANGUAGE ISEHGEH PICK}

To tmd out the lilies in the LANGUAGE vatiable, use POT

'POT : LANGUAGE
TO SENGEN : NOUNS : VERBS
TO PICK : OBJECT

POTS
POTS (command)

5« Mciion -8URY toi POTS (lor prmt out titles) prints the title line ot every procedure
rnm^vrn me workspace.

Examples:

'POTS
TO POLY i SIDE J ANGLE
TO LENGTH : OB

J

TO GREET
TO SPI :S1DE :ANGLE : INC

I Erasing From the Workspace

This section tells you how to erase information from the
workspace The pnmitives tor doing this are

ERALL
ERASE
ERN
ERNS
ERPS

Chapter 14: Managing Your Workspace

ERALL
ERALL (command!

Svtttcticn *BUfit (or

•icapitcnt
ERALL erases atl procedures, variables, and properties from the

workspace*

ERASE
ERASE namUHst} <ER) (command)

The ERASE command erases the named procedure^) from the

workspace.

Examples:

ERASE "TRIANGLE erases the TRIANGLE procedure.

ERASE I TR I ANGLE SQUARE 1 erases the TRIANGLE and

SQUARE procedures.

ERN
ERN nametMtf (command)

S« me c**mc>* irtog SOUH5
nil VERBS at in* oegtnning of tM

The ERN (lor erase name) command erases the named
varlab*e(5| from the workspace.

Examples:

ERN "LENGTH erases the LENGTH variable

ERN ! LANGNAHES e'ases Ihe NOUNS and VERBS vanaDies

ERNS

ERNS (command)

Sw section BURV lor ERNS (for erase names) erases an variables from the

workspace.

Erasing From the Workspace ETsT

ERPS
ERPS (command)

S*? *«ion way- kv The ERPS (for erase procedures) command erases alt

#*t«*ton* procedures from me worKspace

Cleaning and Organizing the Workspace

This section discusses the primitives that you use 10 manage
your workspace effectively. The primitives for doing ttits are

BURY
BURYALL
BURYNAME
UN§URV
UNBURYALL
UNBURYNAME

BURY
BURY name{tist) (command)

The BURY command Dories the procedure**) m Its input.

Certain commands (ERALL, ERPS, POALL. POPS, POTS, and
SAVE) act on everything in the workspace except procedures
and names that are buried.

Example:

SAVE "GQ0D5TUFF saves the whole workspace in the tito

GOODS TUFF except procedures and names mat are ounod

Chapter 14 Managing Your Wotkspace

BURYALL
BURVALL (command)

— '. h r UNBURTALl t<y The BURVALL command bunes
names »n tne workspace.

Example:

1PQTS
TO POLV iSIDE :ANGLE
TO LENGTH :0BJ
TO GREET
TO SPI ;SIDE
»PONS
MAKE "ANIMAL
MAKE "LENGTH
MAKE "MYNAME
7BURYALL
7POTS

the procedures and variable

: ANGLE :1NC

"AARDVARK
3.98
"STEVE

"PGNS

Once BURYALL is run. There are no procedure MM or names

BURYNAME
BURYNAME name{tist) (command)

S*« Moit UUBURYNAME to

unbury var^B
8URYNAME buries the variable name(s) in its input.

Example:

^PONS
MAKE "ANIMAL "AARDVARK
MAKE "LENGTH 3.98
MAKE "MYHAME "STEVE
°BUR VNAME "MYNAME
?PONS
MAKE "ANIMAL "AARDVARK

nm "LENGTH 3.S8

Cleaning and Organising the Workspace

UNBURY
UNBURY namaUsti (command)

See *eci*n Bunv • The UNBURY command unburles the named procedure^).

UNBURYALL
UNBURYALL (command)

UNBURYALL unbunes all procedures and vanable names that

are currently burled in the workspace.

Example:

'POTS
?P0NS

There are no procedures or variable names printed.

'UNBURYALL
?P0TS
TO POLY :5IDE : ANGLE
TO LENGTH : OBJ
TO GREET
TO SP1 :5IDE : ANGLE :INC
'PONS
MAKE "ANIMAL "AARDVARK
MAKE "LENGTH 3.98
MAKE "MYNAME "STEVE

Once UNBURYALL Is run, the procedures and variable names
are visible.

18J Chapter 14: Managing Your Workspace

UNBURYNAME
UNBURYNAME nam^Ustf (command)

UNBURYNAME unDunes the vanable namejsl in its Input

Example:

*PONS

There are no variables visible,

^UNBURYNAME I LENGTH NOUNS)
•>P0N5
MAKE "LENGTH 3.98
MAKE "NOUNS f COMPUTERS HOUSES BEDS CHAM
RS TV STEREO)

Cleaning and Organizing the Workspace 185

General File Management
189 Logo's File System: Some General Information

189 What Is a File''

190 Disk Formatting and Volume Names
190 Disk Organization

192 Accessing Files

194 General File System Primitives

194 CATALOG
195 CREATEOIR
196 EDITFILE

196 ERASEFILE
19G FILEP
197 LOADHELP
197 ONLINE
198 POFILE
198 PREFIX
199 RENAME
199 SET PREFIX

Chapter 15: General File Management

Chtpfctr ta give* you ttw pnmtrm Logo uses four types of files in its fife system: program files.

i7i«
Mng * <lh ****** ?vp** picture files. dribble files, and data files. This chapter presents

general information about Logo's fife system, as well as trie

primitives that you use to manage all types of Logo files.

This chapter is divided into two main sections, wtiicfi provide

e general information about the file system, including some
terminology and rules you need to use it

• the primitives that deal with general file management

Logo's File System: Some General Information

Th>s section gives you the basics of Logo's tile system and

introduces you lo the example that is used throughout the

chapier to show the hie-nandiing features.

What Is a File?

A file is a collection ot information Generally, tfns information

»s organized and stored on a disk. Logo creates different types

of files on disk according to the nature of the information that rs

stored

There are tour types of files you work with m Logo: program

files, picture flies, dnbble files, and data files A program file

is a fiie of Logo procedures that you want to keep and use

again later A picture rile is a file containing a picture that

you've crested* A dribble file is a record of the text that is

pnnted on the screen. A data Hie contains information that

you want to keep track of T such as the addresses and

telephone numbers of your friends

Logo's Flte System: Some General Information

Although (he nature of the fites may oe different, they ate alt

organized on the disk in a similar manner The ne«t section

explains how files are organized by ProOOS—the operating

system under which Logo runs

Disk Formatting and Volume Names

Every disk must be formatted for use. The formatting process

prepares a disk in three ways

• It divides the disk surface into uniform areas, called blocks,

where ProDOS stores information

• It gives the disk a volume name that you setect

• It writes a volume directory and other information that

ProDOS needs to kxate files

You must format all disks before using them to store any

information.

A volume is a formatted disk on which you keep files of

information. Every volume has a name. Here are some
examples of volume names:

Volume Might Be Used for

Name

LOGO The disk you use to start up Logo

MY DISK A disk containing your work

/LOGOSAMP- The factitious disk used tor the examples m
LES/ this chapter

You use volume names to tell Logo where to And the file you

want to got or where to put the fl»e you want to save

Disk Organization

Files can be saved on d*$k »n various ways To get a listing of

which files ate on your rtok. y u use the CATALOG command
This listing of the names and sizes of files t$ called a

directory Whenever you try to open a file* ProOOS checks

the volume directory to find ihe life on the d<sk.

The drsk volume MYDISK indudes the following directory.

Chapter 15: General File Management

"*CATALOG
/MVDJSK/

P1CTUPES1 10
POLVS IS
SPIRALS 10
GAME 10
PHQHEL I SI ?0
ADDRESS 10

Blocks Free: 255 Blocks Used: 75
7

This directory contains files saved at the root of the directory.

After you have accumulated a large number of tiles, this way of

stonng them on your dish might become cumbersome,

ProDOS lets you classify your files on disk according to your

own needs, using a subdirectory structure. LOGO SAMPLES is

organtfed using a system ol auDdlreclorei SuMlrtGtQtlei
are files that comam l*sts of other files.

Subdirectories are very useful in keeping your information

orgamied For example, on (he disk /LOGO.SAMPLES: there

are three subdirectories One (PROGRAMS) holds Logo
programs; the second (PICTURES) holds graphics pictures; the

third (DATA) contains data tor your programs.

The disk volume /LOGO SAMPLES,' has the following volume
directory;

7CATAL0G
/LOGO , SAMPLES/

PROGRAMS/
PICTURES/
DATA/

BIoc*s Free: 139 Blocks Used: H?

Notice that the names of these files listed alt end with a

slash (/). The slash indicates that the files are subdirectories

Figure 15-1 shows you a diagram of the directory structure of

the fictitious disk LOGO SAMPLES,1 The directory structure

shown m this inures is used m most of the examples
throughout this chapter and in Chapter 16

Logo s F*ie System Some General Information

Figure r*f- d**f St*ft^«fOn« Ofl J |WM

CREATED-fl »«d EAA5EHLE a™
ptj^Ainod *n trw erupt**

I programs

GGAMES

HCIACTOC

DICE

PICTURES-

POLV5

GC*R

BEAMC

CAT PtC

[i— .[i—
LI PICTURES M OATA'

IfttlfmWTI

RECORDS

ADDRESS

JUKE I DPIB

PM0*4EII51

Notice thai the subdirectories LOGO SAMPLES PROGRAMS-
and LOGO SAMPLES DATA contam additional subdirectories

that further organize what is stored.

To create a subdirectory, use the CREATED1R command To
erase a subdirectory, use the ERASEFILE (ERF) command

Accessing Files

ProDOS checks through the various directory levels you ve set

up whenever it needs to access a Me on the I
->

nH c«a>hp»c. lu 13^33 \tns NNa TlOTAOTOC on Vie d*0*i

LOGO SAMPLES you trace a path trom LOGO SAMPLES' to

PROGRAMS, to GAMES' and finally to TICTACTOE.

Chapter 15: General File Management

The fife 5 lull name or pathname \s

/LOGO 5AMPLE5/PR0GRAM5/GAME5/TICTACTOE
I . II , II , I

Nolo: A filename can be from t lo 15 characters long and
must begin with a teller. The name can contain any letter

from A through Z any digti through 9 +
and period*

a prefix »s a pathname of a directory or subdirectory. whicJi is

automatically placed m front of a filename that does not begin

with a slash (/)>

There a'e two ways to gam access to the file TICTACTOE

• Use the futt pathname For example

LOAD "/LQGQ. SAMPLES/PROGRAMS/GAMES /TtCT!
ACTQE

• Set the prefix to the subdirectory containing TICTACTOE
and then use only the filename For example

5ETPREF I X *'/LOGG -SAMPLES/PROGRAMS/GAMES
LOAD "TICTACTOE

If you miend to use several files In the same subdirectory, the

second method 15 easier

CATALOG uses the prefix each time it lists a directory

^CATALOG
/LOGO SAMPLES/PROGRAMS/GAME 5/ (This 15 Ihe prefix.)

TICTACTOE 12
DICE 5
Blocks Free: 136 Blocks Used: 142

Logo s Ftle System Some General Information

I General File System Primitives

Tne rest ol this chapter describes the primitives that perform

general tile management (asks, such creating a subdirectory,

checking which volumes are on line, and so on These

primitives apply to an files, regardless ol the mformaiion stored

in the files. The primitives are

CATALOG ONLINE
CREATEDIR POFILE
EOITFILE PREFIX
ERASEFILE RENAME
FILER SETPRERX
LOADHELP

CATALOG
CATALOG (command)

CATALOG prints the names of the riles in the current directory

as wei» as the number of blocks used by each The current

directory is the directory pointed to by the current ProDOS
prefix.

Examples

^CATALOG
/LOGO. SAMPLES/ (current ProDOS prefol

PROGRAMS/ (subdirectory)

PICTURES/ (subdirectory)

DATA/ (subdirectory)

Blocks Free: 138 Blocks Used: 142
T
'SETPREFtX "PROGRAMS (sets prehtj

^CATALOG
/LOGO . SAMPLES /PROGR- (current ProDOS prefix)

AMS/
GAMES/ (subdirectory)

P I CTURES/ (subdirectory)

Blacks Free: 138 Blocks Used: 142
9

Chooter 15 General File Management

To see wnat 19 in the subdirectory PICTURES

->5ETPREFIX "PICTURES
^CATALOG
/L0GD,5AMP| E5/PRDGRAMS/PICTURES/ (current ProDOS prefix)

(filename)

(filename)

POLVS 2
BEAR 3

Blocks Free: 138 Blocks Used: 143

^SETPREFIX rt /LDGD. SAMPLES/ DATA/RECORDS

^CATALOG
/LOGO . SAMPLES /DATA/ RECORDS/

ADDRESS 10 (filename)

(filename)PHQHEL 1ST IS

Blocks Freer 138 Blocks Used: M2
?

CREATEDm
CREATEOIR pathname (command)

CREATEDIH creates Ihe subdirectory indicated by painname

The last U\e name m pathname is the subdirectory to be
created, and preceding names indicate where it should be
placed.

Examples;

^CREATED! R "/LOGO -SAMPLES/PROGRAMS/TOOLS

creates the subdirectory TOOLS in the subdirectory

PROGRAMS II the ProDOS prefi* <s already set lo

/LOGOSAMPLES.PROGRAMSA then

^CREATEOIR "TOOLS

has the same e'tect

General File System Primitives 1 195

EDITFILE

EDITFILE pathname (command)

EDITFILE toads the file indicated by pathname into the edit

butter and saves the edited contents under the same filename.

The old contents will be lost

F<* crtattft cn w%«g trw Editor see You can use EDITFILE on any He, whether it eiists or nor H it

Chapter 4 does n0 | eJlist
i_ ... Ciea (es ,t when yOU gave the contents of

ihe edit butter

The edit butter cannot hold more than 6144 characters. If the

tile you try to edit contains more than mis. Logo displays an

error message and does not let you edit the tile.

ERASEFlLE

ERASEFlLE pathname (ERF) (command)

The ERASEFlLE command erases tn© Me indicated Dy
pathname from the dis* l* the input 15 a lilename alone, the file

must he located in the current directory. An error occurs It no
file ousts

Example:

^ERASEFlLE "/LOGO. SAMPLES /PROGRAMS /PICTURE

5

/BEAR

erases me tile called BEAR from the subdirectory PICTURES in

the subdirectory PROGRAMS.

ERASEFlLE will also erase subdirectories, but only it they

contain no tiles. An error occurs it you try to erase a

subdirectory with files in It

FILEP

F1LEP pathname (operation)

FJLEP outputs TRUE if a Me indicated by pathname exists on
the disk, otherwise it outputs FALSE. An error occurs it you try

to use FiLEP on a device

Chapter 15: General File Management

Eiamplcs:

**PR] NT FILER "/LDGD • SAMPLES/PROGRAMS /HA

!

NO!
FALSE

The (He called HANOI does nol exist

The REPLACEFILE procedure allows you to replace an old file

wth something new when saving on disk

TQ REPLACEFILE IFILE
[F FILEP :F I LE CERF :F1LEI
SAVE : FILE
END

LOADHELP
LOADHELP pathname (command)

The LOADHELP primitive loads the file indicated by pathname

into memory where the main help screen rs stored. This

primitive lets you write Logo programs that provide help to the

user.

The help screen is displayed any time the user presses (jl>©
while the program is reading input from the keyboard.

The rile thai you load must contain less than 1023 characters.

Spaces and carriage returns count as characters. You can use

the EDlTFtLE command to create the text tor your help screen

and the FILELEN operation to verify that the tile is not too long.

Example!

?L0ADHELP "/LOGO. samples/NEWHELP

ONLINE
ONLINE (operation)

ONLINE outputs the volume name of every disk on line. For

example* H you have two dtsk drives connected, and a disk <n

each of them. ONLINE outputs the names of both those disks

Genera) File System Primitives

Example:

'SHOW ONLINE
I/LOGO, SAMPLES/I

You might warn to use ONLINE when you nave a disk and you
cannot remember the name you gave II. Just put it tn a drive

and type PR DNL I NE Logo displays the name of the disk

POFILE

POFILE pathname (command)

POFILE (tor print out file) prints oul the contents of the Me
Indicated by pathname, Logo prints the contents to the screen
An error occurs if you try to use POFILE on a file that ts Already

open.

This procedure can tie used to copy a file

TO COPY :T0 : FROM
DRIBBLE : TO
POFILE :FR0M
NODRIBBLE
END

To copy a Me POLYS to a file SHAPES

?C0PY "P0LY5 "SHAPES

PREFIX

PREFIX (operation)

PREFIX outputs the cu«*nt PioOOS prelim You use
SETPREFIX to set (he prefix

'PR PREFIX
/LOGO. SAMPLES/
'SETPREFIX "P ICTURE5
7PR PREFIX
/LOGO -SAMPLES/PICTURES/

Chapter 15: General File Management

RENAME
RENAME pathname newpathname (command)

The RENAME command finds the tile indicated by pathname on
ttie dtsk and changes Its name to newpathname. The file's

contents are not affected. Newpathnatm must specify a Me In

the same direciOfy as pathname.

Example:

''RENAME "/LOGO . SAMPLES /DATA/ADDRESS "/L!
000 - SAMPLES /DATA/ADDRESS * OLD

renames the file ADDRESS to ADDRESS, OLD

SETPREFtX

SETPREFtX prett* (command)

SETPREFtX tells Logo to set the ProDOS preltx to pruttx. This

command lets you access a file in the subdirectory named by
preftM without having 10 type its full pathname II also affects

what the CATALOG command prints.

Examples:

'SETPREF 1 X "/LOGO 5AMPLE 5/PROGRAMS
'CATALOG
/LOGO • SAMPLES/PROGRAMS/
GAMES/
PICTURES/

Blocks Free: 138 B 1 Used: 142

You can now access the files or subdirectories under the

subdirectory PROGRAMS—in this case. GAMES and
PICTURES—by the filenames atone.

General File System Pnmitives

To access files in the root directory.

75ETPREF I X "/LOGO . SAMPLES
^CATALOG
/LQGQ. SAMPLES/

PROGRAMS/
PICTURES/
DATA/

Blocks Free: 136 Blocks Used: M2
1

200 Chapter 15; General Ftle Management

Managing Various Files

206 Working With Program Files

206 LOAD
206 SAVE
207 SAVEL
207 Working With Picture Files

200 LOADPIC
208 PRINTPIC

208 SAVEPIC
209 Workrng With Dribble Fitea

209 DRIBBLE
210 NOORIBBLE
211 Working With Data Files

211 Reading and Writing Information

211 Opening Files

212 ALLOPEN
212 CLOSE
213 CLOSEALL
214 FILELEN
215 OPEN
216 READER
217 READPOS
218 SETREAD
218 SETREADPOS
219 SETWRITE
220 SETWRITEPOS
221 WRtTEPOS
221 WRITER

Chapter 16: Managing Various Files

n

T?

*'

221 A Sample Project Us*ng the Data File System

222 Stop V Creating a Data File

224 Stop 2 Retrieving Informatwn

225 Slop 3: Changing information

Chapter 16: Managing Various Files

ft

13

cr*c**r ia dotcttm gmtti n* This chapter gives you information about the various types ol

mwayuiwii «th Logo (,105 that Logo US6S*

This chapter is divided mio five mam sections, wmch provide

• the primitives for working with program files

Lhe primitives Itv working with picture Mes

• the primitives for working with dnbbie flies

• the primitives for working with data tiles

• a sample project using data files

The examples in this chapter are based on the disk named
LOGO SAMPLES which is used tor illustration in the previous

chapter. You may want to refer to that disk s overall directory

structure (see Figure 15-1) when you arc trying them out

Logo reads information from three sources; dies on a disk, the

keyboard, and some devices that are attached to the computer

When you start up Logo, it reads information from the

keyboard

Likewise, Logo writes information to three destinations: files on

a disk, the screen, and the devices attached to the computer.

When you start up Logo, it writes information onto the screen.

Hole: a device <s a piece of hardware that ts attached to

the computer through a slot (on the Apple He) or a port (on

the Apple He) It is important to noto that Logo treats the

keyboard, the screen, and other devices such as a printer, as

hies, |ust as it treats information on a disk as fries

Chapter 16: Managing Various Files

Some fite primitives work with both files on dtsks and devices
like printers In ihts chapter the input term file represents inputs

oi this kind The devices are accessed through the port or slot

number to which they are attached. The most common device

you will access this way ts a printer A pnnier anached to pon 1

or s*ot i would be accessed by the number l.

Working With Program Files

This section tells you how to save and load files containing

Logo programs. The primitives you use to do this are

LOAD
SAVE
SAVEL

LOAD
LOAD pathname (command)

The LOAD command toads the contents of the hie indicated by
pathname Mo the workspace as H you typed il directly from

top level. An error occurs it the file does not exist An error also

occurs if you try to toad 10 a device.

After Logo loads tho contents of a fife, d looks tor a vanabie
called STARTUP If one eatsts. Logo executes its contents.

Evamplear

95ETPREF 1 X "/PROGRAMS/PICTURES
''LOAD "BEAR

Logo reads everything In the file BEAR into the workspace.

SAVE
SAVE pathname (command)

The SAVE command creates a file and saves in 11 all unbuned
procedures and variables and an properties in the workspace.
Alt eiiui uu.uo || |fit? Wtj yuU lUJfHf qi(t*aJy exists in UUS C8S£.

Chapter 16 Managing Various Fites

you should first either erase the e ftrating tile using ERASEFILE

or rename it using RENAME, An error also occurs if you try to

save to a device.

Examples;

?SAVE "/PROGRAMS/PICTURES/FACES

saves the contents of the workspace m the Me called FACES

SAVEL
SAVEL nameittsll pathname (command)

The SAVEL command saves the procedures named In

naroflrVs/). and all me unburted variables and properties in the

workspace to pathname This command is useful for saving a

portion of your workspace onto a disk An error occurs it you

try *o save to a device using SAVEL Compare it with SAVE.

Example:

*PQTS
TO TRI :QBJECT
TO POLY :S1DE : ANGLE
TG SPI :SIDE :ANGLE : INC
TO INSPI :SIDE :ANGLE ;INC
TO WELCOME rNAME

SAVEL IPOLV SPI IH5PM "/LOGO SAMPLES /

1

PROGRAMS /P I CTURE5/P0L VS

Working With Picture Files

This section describes the primitives you use to load, save, and
print Logo pictures The primitives are

LOADPIC
PRINTPIC
SAVEPIC

Working With Picture Files 207

LOADPIC
LOADPIC pathname (command)

The LOADPIC command loads the picture named by pathname
onto the grophics screen Logo will load any file onto the

graphics screen It the Mo is not a picture, something will be put

on the graphics screen, bill you cannot be sure what rt will be.

Examples

'LOADPIC "/LOGO, SAMPLES/PICTURES/ CAT. PI

!

C

loads the picture contained in the file CAT PIC onto the

graph>cs screen

PRINTPIC
PRINTPIC tnteger (command)

PRINTPIC prints the contents ol me graphics screen to the

printer in the slot or pon named You can prim pictures only to

the Apple Jmagewntef pnnter It you try to use this primitive

with other printers, the results are unpredictable.

Enample:

'PRINTPIC 1

SAVEPIC
SAVEPIC pathname (command)

SAVEPIC saves the graphics screen into the Me indicaled by
pathname You can retrieve the screen later using LOADPIC.

Example*:

'SAVEPIC "/LDGD* SAMPLES/PI CTURES /CAT, P I

C

Chapter 16: Managing Various Files

Working With Dribble Files

This section describes me two primitives that you use to record

the interactions between you and the Apple computer. The

pfimilives are DRIBBLE and NODRIBBLE.

DRIBBLE

DRIBBLE file (command)

DRIBBLE starts the process cf sending a copy ot me
characters displayed on the text screen to tile. DRIBBLE
records interactions between the Apple computer and the

person at the keyboard. DRIBBLE automatically opens file.

NODRIBBLE stops the process of dribbling.

You cannot use SETREAD or SETWRiTE with a dribble file

while st.li onbbiing However once a dribble Me on disk has

been closed wrth NODRJBBLE. you can troat It like any other

file. You can then open it, read from it, or write to it

Note that onty one dribble file can be open at one time

EvampVes:

>DRIBBLE /DATA/RECORDS / JUNE t . DR I B

creates a file called JUNE! DRIB and stans me dribbling

process Every imo appearing after DRIBBLE is sent to this tile

*CS
TD 100
?RT BO
9 FD SO
9NDDR 1 BBLE

Working With Dnbb*e Files

DRIBBLE can De used lo print the contents of a tile to the
printer

TO DUMP [FILE
DRIBBLE 1

PDF I LE : F 1 LE
NODRIBBLE
END

NODRIBBLE
NODRIBBLE (command)

NODRIBBLE turns off the driDDie feature so a copy ot the
characters from the screen will no longer be sent to tne tile or
dewce named previously by me DRtBBLE command

Example*:

'DRIBBLE "/LOGO . SAMPLES/ DATA/ RECGRDS/CL f

ASS. DRIB

creates a tile called CLA5S.DRI8 ana starts the driooimg
process.

'REPEAT 5 (PR RANDOM 10]
8
D

3

3
2
'NODRIBBLE

Everything pul on the te*t screen alter Ihe DRIBBLE line is sent
to the We CLASS ORIB Now. if you prnil out the tile

CLASS DRIB, you will see what you just typed

'POFILE "/LDGQ . SAMPLE 5/ DATA/RECORDS/ CLA

!

SS . DR I

B

'REPEAT 5 tPR RANDOM 101
8
a

3

3
e
'NODRIBBLE

Chapter 16 Managing Vanous Files

Working With Data Files

This section gives vou information about

• reading and writing Information In data dies

• opening and closing data flies

• the primitives that work with daia Hies

Reading and Writing Information

With Logo's file system, thme is always a current file open for

reading, called the reader, and a current file open lor wntlng,

called the writer When you stan up Logo. Logo assumes that

the current reader is the keyooard and the current writer <s the

screen. You can change the current reader and writer lites with

the SETREAD and SETWRITE commands. wh«:h are described

later in this chapter.

When the current reader or writer is a file on disk mere are

current positions in the Me where Logo will stan reading or

writing For example, when Logo opens a file, it is ready to read

Irom the beginning of the fife and write at the end You can
change the read and write positions with the SETREADP09 and
SETWRFTEPOS commands, which are descnoed later in this

chapter

Opening Files

You must open a hie or device with the OPEN command before

you can read from II or write to it Only one device can be open
at a time although you can open as many as six fites. So. if a
device is currently open, you cannot use a primitive that

automatically opens and closes oev#ces For example, you
cannot use the DRIBBLE command lor a punter in slot 1 or

port 1 if slot 2 or pon 2 Is already open

The data lite pnmitives are

ALLOPEN
CLOSE
CLOSEALL
FILELEN
OPEN

READER
REAOPOS
SETREAD
SETREAOPOS

SETWRITE
SETWRITEPOS
WRITEPOS
WRITER

Working Wiih Data Files

ALLOPEN

ALLOPEN (operation)

ALLOPEN outputs a list of alt tiles and devices currently open

The OPEN command opens a Use or a device.

SPRINT ALLOPEN

?

No files or devices are open

''PR INT ALLOPEN
1 PHONEL I ST

The device in slot 1 or port 1 (the pcmterl and the file calted

PHONEUST are Open

The procedure BYE makes sure all files are closed Detore you

turn oft mo machine

TO BYE
IF NOT EMPTVP ALLOPEN f CL05EALL

)

PR [YOU CAN NOW TURN OFF THE POWER-

I

END

CLOSE
CLOSE Me (command)

The CLOSE command cfoses the named f*te or device that is

currency open. See OPEN to open a tile or device An error

occurs il you try lo use CLOSE w<lh a die or device Ihal i§ R01

open. An error also occurs i! you iry to use CLOSE with a file

that is opened by the DRIBBLE command

Warning
tt is important that you never turn oft yoor computer white hies

arc open This can damage the mfegnty of your dtsk

Chapter t6: Managing Various Files

Examples:

''CLOSE M
/ LOGO. SAMPLES/DATA /PHONEL I ST

c*oses me tile called PHONEUST

The STORE procedure opens a Me. sends data to it and doses
the file

TO STORE : F I LE j DATA
OPEN iFILE
SETURITE :FJLE
PRINT : DATA
SETURITE I I

CLOSE :FILE
END

'STORE "/LOGO -SAMPLE 5/ DAT A /PHONE LI ST [B!
ARBARA; 7GS-4201J

The name ano telephone numoef am whiten lo the Me called

PHONEUST

CLOSEALL
CLOSEALL (command)

5ee ™eci<*i nooribble lor The CLOSEALL command closes all Mes and devices thai are
oostng to* currently open. Dnbdle files are not closed with CLOSEALL

Use the OPEN and CL05E commands 10 open and close one
file at a time. If you try to use CLOSEALL *hen no flies or

device are open, it is ignored.

'OPEN 1

''OPEN "/LOGO SAMPLE 5/ DATA/PHONEL 1 ST

You opened the printer In slot 1 or port 1. and a file called

PHONELIST. After sending data to the file and to the printer,

you can close both by typing

'CLOSEALL

Working With Data Files

FILELEN

FILELEN pathname (operation)

FILELEN outputs rhe length m bytes ol the contents of the fue

indicated by pathname. The file must be open to use this

primitive. An error occurs it the file is not open.

Example:

'OPEN *VLOGD . SAMPLES/DATA/RECORDS/ ADOBE

!

SSES
SPRINT FILELEN 'VLDGD • SAMPLES/ DAT A/RECO

!

RDS/ADDRE5SES
126

Tne file called ADDRESSES already has 128 bytes of data

TO F1LLIN :FJLE : LEN
OPEN : F I LE
SETWRITE : F 1 LE
MAKE "SPACE : LEN - FILELEN : F 1 LE
IF :5PACE > [REPEAT :SPACE [TVPE Dl)
5ETURITE t)
CLOSE : F ILE
END

The procedure FILLIN opens the t»le FILE and fills it m with

zeros so the Me win De ;LEN bytes long.

OPEN
OPEN me (command)

Tne OPEN command opens Mo so it can send or receive

characters. You must open a data tile before you can access it

Note that you can open only one device at a time

You can open a manmum of sit dish files ai once if the file

in# ciosi vid ctOSEAu, named by fife does not emsL than OPEN creates ihe file. When
cflimraniit yo^ rmisri using Logo, you must close ail devices or (lies mat

are open

Chapter 16 Managing Various Files

Evamplo:

TO READFILE :F ILE
SETREAD : F I LE
IF EOUALP FILELEN : F ILE READPQS (SETREAt
D f 1 CLOSE ; F I LE 5TOP]
PRINT READL1ST
READFILE ;F1LE
EHD

^SETPREFIX "/LOGO SAMPLES/DATA/RECORDS
^OPEN "ADDRESSES
?8§flBFifcE "ADDRESSES
ADDRESS LIST
MARIE: SS CEDARWOQD
LOGO: 9960 COTE DE L f ESSE

The READFILE procedure reads information from a file mat is

already open unU tho ond-oMlte position JEQUALP FILELEN
;FILE REAOPOS) is reached Ai mat time, the file ts closed and
execution ol the procedure stops.

READER
READER (operation)

READER outputs the current Mo that is open for reading You
can change the current read file wrth the SETREAD primitive.

READER returns the name of the tile or the empty list it the
current reader is the keyboard

Examples:

*>PR INT READER
/LOGO. SAMPLES/ DATA/RECORDS/ADDRESS

The file ceiled ADDRESS in the subdirectory DATA/RECORDS
is the current read tile.

Working With Data Files

TO CHECKREAD ;FILE
IF HOT EQUALP READER :FILE (OPEN : F I LE !

5ETREAD tFILEJ
IF EQUALP FILELEN : F I LE READPOS tCLDSE !

jFlLE SETREAD [) 5TDPJ
PRINT READLIST
CHECKREAD : F I LE
END

-^CHECKREAD "/LOGO * SAMPLES/DATA/CLASS L 1 !

ST
ERIC BROWN
MICHAEL QUENH
CHERYL HARTLEY
JEHHY SPARROW

The CHECKREAD procedure checks to see it the file it has as

input is the current fead Mo 11 H is not, CHECKREAD opens Ihe

file, makes rt the current read lite and then reads until reaching

the end-ot-fiie position

READPOS
READPOS (operation)

READPOS (for READ POSitlon) outputs the position In the

current reader An error occurs if the current reader is the

keyboard o* a oevice To set the position in me read file see

the SETREADPOS command.

Example*:

''SETPREF I X "/LOGO -SAMPLES/DAT A/RECORDS
''OPEN "PHONEL I ST
''SETREAD "PHQNELIST
''PR] NT READPOS

II you nave just opened a file. READPOS outputs

The procedure LiSTFILE lists the information stored m the read

1
1
-

along wim a number indicating where each line Is stored

Chapler 16 Managing Vanous Files

TO LISTFUE : F I LE
IF EQUALP F I LELEH : F I LE READPDS [STQPI
PRINT READPOS
PR I NT READWORD
LISTFILE :F|LE
END

7QPEH "PHOHELIST
?SET«EAD "PHOHELIST
^LISTFtLE "PHOHELIST

PASCAL 54S-2G54
16
MARIO 631-2222

SETREAO
SETREAD Me (command)

SETREAO sets the current reader to tile. Alter you give this

command. READLIST, READWORD. READCHAR. and
READCHARS read information from this Ml*

Bolore you use SETREAD, you must open the file with the
OPEN command. An error occur* if ihe Mo is not open To set
tfie current reader back to the keyboard, give SETREAD the
empty hsl as input.

Examples:

*SETPREF1X "/LOGO . SAMPLES /DATA
*DPEN "PHOHELIST
''SETREAD "PHOHELIST
*PRINT READPDS

The reader *s sel to PHONELtST and the read position is ai the
beginning of the file.

"'PR I HT READWORD
PASCAL : 54S-265H

READLIST reads from the current reader To sel the reader

back to the keyboard

^SETREAD t)

Working With Data Files

SETREADPOS
SETREADPOS integer (command)

&*r aecbon flEADPOS lof

ntotirubor Abcul the

SETPEAOPOS ctmroahU

my# SETREADPOS sets me read position In the current reader. The

integer should be a number between and the current length ol

the file. An error occurs it *t is not fn this range. An error also

occurs if The current reader Is the keyboard or a device.

Examples:

*0PEN "PHQNEL I 5T
*SETREAD "PHOHEL 1ST
''SETREADPOS 2

SPRINT READCHAR
S

The file PHONELIST ts opened and set up tor reading. The read

position is set to 2. and the character at that position is pnnted.

TO FILERL :POS
SETREADPOS :PD5
OUTPUT READWORD
END

SPRINT FILERL 34
REHAUD 734*9374

The FILERL procedure outputs me Msi found at the file position

you gave as input

SETWRITE
SETWRITE Mr (command)

SETWRITE sets the current writer lo the lite you name The

primitives PRINT. TYPE, and SHOW all print to the current

writer. You cannot use SETWRITE unless the file has previously

been opened

To restore the screen as the current writer, use the SETWRITE
command with the empty list as input

2181 Chapter 16: Managing Various Files

Holei The commands PO. POALL PON. PONS. POPS. POT.
POTS, and POFILE all print to the screen but no! to the

current wnier

Examples:

**DPEN 1

->SETUR]TE 1

Now the vonoos print commands w»n send information to the

device m slot t o* port 1

*PR1NT [LOGO TELEPHONE DIRECTORY]

If the device in slot 1 or port l is a printer. LOGO
TELEPHONE DIRECTORY is printed there

*SETUR1TE [1

The current writer ts set back to the screen

TD STORE 3 FILE iDATA
OPEN : F 1 LE
5ETWRITE : F 1 LE
PRINT : DATA
SETWRITE tl
CLOSE : F I LE
END

*STDRE **PHDNEL 1 ST (BRIAN: 4S1-2513)

SETWRITEPOS
SETWFMTEPOS integer (command)

SETWHITEPOS sets the wnle posilKin in the current Mo This

command <s uselui when modifying information in a tile. You
must set me write position to a number that <s between and
the end*oMito position If you try to set H somewhere out of this

range, an error occurs.

An error also occurs if you try to set the write position when
the current writer is the screen or a device

To check the current position, use the WRrTEPOS command

Working With Data Files

Examples:

'OPEN "PHONELIST
'SETWRITE "PHONELIST
'SETWRITEPOS
'PRINT tMARIE 93S-339S)
'SETWRITE [1

The file PHONELIST is opened, sewcieo lor writing, ar>a me
write position is set to (it was at the end ol the file when the

Me was opened*. The list that <s printed replaces whatever was
at the beginning ol the hie.

WRITEPOS
WHITEPOS (operation)

WRITEPOS (lor write position) outputs where in the current

write file the the next chaiacter will be written. An error occurs

il the current writer is the screen or a device.

Examples!

'OPEN "PHONELIST
'SETWRITE "PHONELIST
•MAKE "POS WRITEPOS
'SETWRITE U
'PR i POS
33

Notice that you can't use PRINT WRITEPOS directly because

the write position will be pnnted into the 'lie PHONEUST.

The CHECKPOS procedure pnnts the file position pi the

cunent writer

TO CHECKPOS
MAKE "POS WRITEPOS
MAKE "FILE WRITER
SETWRITE tl
PR i POS
SETWRITE : F I LE
END

'CHECKPOS "PHONELIST
33

2201 Chapter 16: Managing Various Files

WRITER
WRITER (operation)

WRITER outputs tnt* current file or devnre thai is open for

writing. Compare this wilh the ALLOPEN operation.

Examples:

TO CHECKWR I TE :F ILE iOATA
IF NOT MEMBERP : F I LE ALLOPEN I0PEN :FILI
EI
MAKE "QLDWRtTER WRITER
SETWRITE : F ILE
PRINT :DATA
SETWRITE : OLDWR I TER
END

''CHECKWR I TE "/LOGO . SAMPLES /DATA/ CLASS. L

!

1ST [KIYOKD OKUMURA 1

The CHECKWRITE procedure first determines if a file is open. If

it is not. CHECKWRITE opens the file, makes it the current

writer, and sends data to It, CHECKWRITE maintains the

original writer.

H A Sample Project Using the Data File System

Thrs section examines the data tile system, using a telephone

directory project as a example. You want to store the telephone

numbers ot the members of a social duD The obfectrves of the

pro)ect are:

1* To store the members' names and their phone numbers.

2. To find a particular member s phone number,

3. To change a member s phone number

A Sample Project Using the Data File System

Step 1: Creating a Data File

Here is a procedure that reads the name and phone number of

someone from the keyboard.

TO ASKINFD
PRINT [Type in the member's name:)
MAKE "NAME READUDRD
PR I NT IType In the phone number:

1

MAKE "TEL READUIORD
EHD

ASKiNFO prints the message on the screen, takes the answer
from the keyboard, and gives a name to this answer When
ASKiNFO finishes its |ob. *t creates two vanaWes: one is called

NAME and the other TEL. Tne next step is to wnte the

information <nlo a file-

Logo lets you wnte to files (or devices) as easily as you can
write to trie screen. In addition. Logo lets you read from a file

as easily as you read from the keyboard.

The SETWRITE command is used to drtect information to

different tiles or devices.

TO URlTEIhTQ
SETWR I TE "MEMBERS {MEMBERS ts the filename)

PRINT t NAME
PRINT rTEL
SETWR I TE M (directs output back 10 the

screen)

END

All mat remains now *s to write mo superproceduro to open ine

data fue called MEMBERS, run these suppracedures, and c*ose

the Me.

TO SAVE I NFD
OPEN "MEMBERS
ASKINFD
MR ITE INFO
CLOSE "MEMBERS
END

Chapter 16: Managing Vanous Files

Let's try the procedure now

'SAVE 1 NFD
Type in the member's name:
Mar

i

d Car r I ere
Type m the phone number:
423-5B00
»

The program finished running, but you can't see what happened

10 (he data hie To check the result, print out the We.

'PDF ILE "MEMBERS

Logo displays everything written in the data die MEMBERS-

Har i o Car r l ere
423-SBOD

What happens if we run the procedure ogam?

'SAVE INFO
Type in Ihe member's name:
Renaud Nadeau
Type in the phone number:
392- 1563
7

SAVEINFO worked ;ust like rt did the first time Now too* at Ihe

result.

'POFILE "MEMBERS
Mario Carriere
423-5800
Renaud Nadeau
392-1563
7

The procedures work tor adding more members as well as lo*

creating the data Ml tor tne first few,

A Sample Project Using the Data File System

Step 2: Retrieving information

Alter creating the data Me containing names and phone
numbers, the neit step is to build a program to find a particular

member s phone number.

TD F1NDJNF0
PRINT [Type in Ihe member's name:)
MAKE "NAME READL15T
OPEN "MEMBERS
SETREAD "MEMBERS
F I HOTEL : NAME
SETREAD I 1

CLOSE -MEMBERS
END

TO FINDTEL : NAME
rF fiEADLIST - : NAME r PR SE r The phone n!
umber is:) READWORD STOP)
IF EQUALP FILELEN "MEMBERS READPQS tPR <

{Can't find this name, I STDPI
F INDTEL : NAME
END

FINDINFO is Ihe superprocedure First. it reads from Ihe

keyboard the name of the person whose phone number la

wanted. Then, n opens the data Me and reels Logo thai it wants

to read information from this data tile.

The subpfocedure FINDTEL starts reading line by line (using

HEAOLIST) from the beginning of this data tile. Each time ft

reads a Imc. FINDTEL compares the line with the name it ts

looking lor. It they are identical, it reads another line and prints

the sentence

The phone number is:

R not. it checks to see if READLIST has reached the end-oMile

position (EGUALP FILELEN "MEMBERS REAOPOS). If the

end-oMile position has been reached, FINDTEL prints the

message

Can't find this name.

Chapter 16: Managing Various Flies

Step 3: Changing Information

A member's phone number may cnange. 50 you must be aWe
to update the data in the hie To modify part of the data, you

must Know the locafcon of the information to be changed. The

procedures (0 retrieve the information (FINDINFO and FINDTEL)

can be used for this purpose Once the location is found, you

can wfilo the procedure MODIFY, which rewrrtes the information

at this tocahon.

TD MODIFY : L DC AT 1 DH
PRINT (Type in the new phone number;]
SETREAD r

1

SETWR I T£ "MEMBERS
SETWRITEPDS : LDCAT I ON
PRINT READWDRD
SETWRITE II

END

SETREAD |] tells Logo thai you want to read the data from the

keyooard SETWRITE "MEMBERS tells Logo that you want to

direct the ne*i PRINT command to whle the new data *nto the

MEMBERS file, SETWHITEPOS [LOCATION makes sure Wat II

is written at the current location.

Thus, the command PRINT HEADWORD picks up data from the

keyboard and pnms it into the hie.

Now you must incorporate this procedure mlo a new FINDTEL
procedure FINDTEL2 will read the l»le line by line comparing

each line to the name it is looking (or. H Will then call MODIFY
with the LOCATION it gets irom READPOS in the procedure

FINDTEL READPOS is the input to MODIFY. Let 5 change the

name ol the superprocedure FINDINFO to MODINFO

A Sample Project Using the Data File System 1 225

TO MODINFO
PRINT (Type in the member's namei]
MAKE "NAME READL 1ST
OPEN "MEMBERS
SETREAD "MEMBERS
F1NDTEL2 : NAME
SETREAD t)
CLOSE "MEMBERS
END

TO F I NDTEL2 : NAME
IF RL • : NAME IMODIFY READPOS STOP!
IF EQUALP FILELEN "MEMBERS READPOS [PR!
ICan't find the name.] STOP]

F I NDTEL2 : NAME
END

Cnapler 16 Managing Vanous Files

Property Lists

229 Using Property Lists to Keep Records

230 EflPROPS
230 GPROP
231 PLJST
232 PPROP
232 PPS
233 REMPROP

CnaptGf 17 Property Lists

ft

3"

1'

Any Logo word can have a property list associated with U A
property list consists ot an even number or elements Each
pair ot elements consists ot a property and lis value, a word or

a list.

A property list has the form Ipropt veil prop2 vai2 | You can

manipulate property lists using me primitives in this section

ERPROPS
GPROP
PLIST

PPROP
PPS
REMPROP

save and sav£l are oucnrjed hi The commands SAVE and SAVEt save property lists In files at

Chapto is Ine same time they save procedures and variable names.

Using Property Lists to Keep Records

Property lists can be very useful in keeping records or Other

structured data oases The following example is used as a

conteil for eftptammg the property list primitives.

Suppose you want to keep track of the telephone numbers and
birthdays of your friends, invent a Logo word, say Ft. to act as

a peacekeeper for youi first friend Then write

PPROP "F1 "NAME [BR I AN SILVERMAN)
PPROP "Ft "PHONE (514 SS5 41231
PPROP "Ft "BtftTHDAV [SEPT 231

Using Property Lists to Keep Records

Do this (or all your friends, giving your second friend the

placekeeping word F2 and 50 on. For example:

PPROP "F2 "NAME CEFFIE MAN I AT IS)
PPROP "F2 "PHONE 1514 631 61231
PPRDP "F2 "BIRTHDAY [MAY 201

PPROP "F3 "NAME [MICHAEL 0U1HN]
PPRDP "F3 "PHONE 1613 742 55551
PPROP "F3 "BIRTHDAY [DEC 3)

After you have finished, moke a list ol the placekeeping words
like this

MAKE "FRIENDS [F 1 FZ F3 J

You can then use GPROP to wnte procedures that search

through me list FRIENDS to do such things as find a given

friend's birthday o* list all your Inends with me same area code
Examples ol such procedures appear with the primitive

descriptions that follow.

ERPROPS

ERPH0P8 {command)

ERPROPS (for erase properties) erases all properties from the

workspace To check which properly lists are currently m the

workspace, use PPS. Use REMPROP to remove properties one
at a time from the workspace

GPROP

GPROP name property (Operation)

GPROP (for get property) outputs the value of property of

name 11 there is no such property. GPROP outputs the empty
hs l

Examples:

''SHOW GPROP "F1 "NAME
[BRIAN SILVERMAN!

23Q Chapter 17 Property Lists

The phone list procedure lists your friends' names and phone
numbers.

TD PHQNEL I ST : FRI ENDS
JF EMPTYP :FRIENDS tSTDPl
PR SE GPROP FIRST i FR I ENDS "NAME GPROP !

FIRST : FR I ENDS "PHONE
PHONEL I ST BF : FRI ENDS
END

^PHONEL I ST : FR I ENDS
BRIAN SILVERMAN S14 555 4123
EFF1E MAN I ATI 5 514 631 6123
MICHAEL OUINN 619 742 5555

PLIST

PUST name (operation)

PLtST outputs the property lisi associated with name. This is a

list of properly names paired with their values, in me torm

Ipropi vail prop2 vat2 .»],

Eiample;

*5H0W PL 1ST "F2
I NAME tEFFIE MAN I AT I 51 BIRTHDAY [MAY 20!
JPHONE 1514 G31 61231

1

The FlNDBIRTH procedure outputs the birthday ot a given

friend.

TO FlNDBIRTH : FRI END : FR) ENDS
IF EMPTYP : FRI ENDS tDP IN0NE1 1

IF EQUALP FIRST BF PLIST FIRST : FR IENDS

!

tFRIEHD tQP GPRDP FIRST : FRI ENDS "BIRT!
HDAV]
P FlNDBIRTH : FR I END BF : FR I ENDS
END

*PR FlNDBIRTH [MICHAEL QUINN1 : FR I ENDS
DEC 3

PLIST 23!

PPROP
PPROP name property object (command)

The PPROP (for put property) command gives name
property with value object. Note that ERALL erases procedures,

variables, and properties. Use REMPROP to erase properties

one at a time or ERPROPS to erase them all at once.

Example:

^SHOU PL 1ST "F3
[NAME (MICHAEL QUIHN] PHONE [619 742 551
55] BIRTHDAY [DEC 3 J J

?PPROP "F3 "ADDRESS [55 OAKR I DOE I

?5HQW PLI5T "F3
(NAME (MICHAEL OUIHN] PHONE 1619 742 S5I
55) BIRTHDAY I DEC 31 ADDRESS [55 DAKRID!
OEU

PPS

PPS (command)

The PPS (for pnnt properties) command pnnts the property lists

of everything m the workspace

Example:

"NAME (MICHAEL QUINN)
"PHONE (619 742 5555)
"BIRTHDAY (DEC 3)
"ADDRESS (55 OAKR I DOE)
"NAME (EFFIE MAN I ATI S)
"PHONE (514 631 6123]
"BIRTHDAY [MAY 201
"NAME (BRIAN SILVERMAN)
"PHONE [514 555 4123)
"BIRTHDAY [SEPT 23)

''PPS

PPROP "F3
PPROP "F3
PPROP "F3
PPROP "F3
PPROP "F2
PPROP "F2
PPROP "F2
PPROP "Fl
PPROP "Fl
PPROP "F1

232 Chapter 17: Property Lisls

I REMPROP

HEMPROP na/ne property (command)

Sw» »i\o wttiMs pprop and The REMPflOP (fof remove pcopeny) command removes
GPBOP property tram me property list ot name

Example:

9 SHQU PLIST "Ft
C NAME f BR 1 AN SILVERMAN] BIRTHDAY [SEPT !

23] PHONE [514 555 412311
^REMPRQP "F1 "PHONE
*5H0W PL 1ST "F1
[NAME (BRIAN SILVERMAN] BIRTHDAY ISEPT !

23]]

REMPROP

Special Primitives

238 Assembly-Language Primitives

238 Some Species About me Apple s Memory
241 Ustng Buffer Space
241 Using Node Space
241 AUXDEP0S1T
242 AUXEXAMINE
242 BLOAD
242 BSAVE
242 CALL
242 DEPOSIT
243 EXAMINE
243 Special Graphics Primitives

243 .SCRUNCH
243 SETSCRUNCH
245 Miscellaneous Primitives

245 CONTENTS
245 QUIT

Chapter IB Special Primitives

This chapter presenis some speaat primitives that may affect

the Logo system itself These primitives give you the power of

directly accessing the computer memory or modifying what s m
it. At the same lime they are dangerous primitives because you

can destroy the contents of your workspace In Logo by using

them carelessly. IV that happens* you will need to restart Logo.

The names of these primitives start with a penod to warn you
that they are dangerous. You should save your work before

experimenting with them.

The special primitives appear in three groups:

• assembly-language and direct-memory-access primitives

• special graphics primitives

• miscellaneous primitives.

Chapter 18 Special Primitives 237

Assembly-Language Primitives

This section explains the special primitives that allow you to use
assembly-language programs from Logo and to directly access
memory. It also gives you some specific Information about the

Apple's memory that Is useful tor programming in assembly
language.

The primitives appear In this order:

AUXOEPOSIT
AUXEXAMINE
BLOAO
BSAVE
CALL
.DEPOSIT
EXAMINE

Some Specifics About the Apple's Memory
Sw it* technics nsfaetv* mmiai The Apple ir* memory is divided into two 64K banks: the matn

S^S^**? bank and the *u*mfy Mnk ,h0 f0,tow,ng memorv maps **»
rnmm iaVout y°u how Lo9° <tes* banks.

Cfiaptor 15: Special Primitives

Main Memory

FFTF

D000

CO00

BFOO

6100

6000

5C0O

5800

5400

&000

4CD0

4800

4400

4000

2000

800

400

D

ProDOS

I/O Space

Free Space and ProDOS

Logo Code

Logo Data

File Buffer 5

File Buffer 4

File Buffer 3

File Buffer 2

File Buffer 1

File Buffer

Dribble Buffer

Load/Save Buffer

Hi-Res Graphics

Ed 1 L Buffer

Text Screen 1

Logo Data

Assembly-Language Primitives

Ami 1 iery Memory

rrfr

EDOO

DDDD

CDOD

BFOO

BBOO

B700

BOO

400

200

ProDQS

Logo Code

I/D Space

ProDDS

Editor Help

Plain Help

Node Space

Text Screen 2

ProDOS

Logo Data

There are some specific locations In the two banks that you

need to know about II you're writing assembly-language

programs Tab*e 18-1 presents these locations

Information

Maximum number data tiles (multiplied b)

Pffinier le first page Beyend ngde *p3Q?

Flag (or invalid edit buffer

Location Normal Value
Hen Decimal He« Decimal

300 768 36 54

10 19 67 1B3

301 769 a

Chapter 18 Special Primitives

Using Buffer Spsce

You can use tne Mil butter, graphics buffer, and rite buffers for

your programs if these buffers are not being used by Logo
while your programs are running

The edit butler and graphics buffer should be used only lor

temporary storage, that Is, storage that you need only while

your assembly code is executing* It you use the edit buffer,

make sure you mark the flag for indicating invalid contents of

the edit buffer If you use the graphics buffer, be sure to clear it

out when you re finished to prevent unpredictable graphic

displays

The file buffers can also be used tor assembly-language code
To make sure that Logo does not use the bulfers you are

using, you must change the number of hies that Logo can use

at the location indicated in Table 18*1 Note that the number

stored is nine times the number of files Logo will handle

It you need 2K bytes for your code, you can change the number
of files Logo can have open from 54 to 36 Dang this frees file

buffers A and 5 for your use.

Using Node Space

You can use node space tor assembly-language programs. The

only time you can reserve the node space <s when Logo first

starts up, no matter when you miend to actually use it You
reserve space by changing the address of the end of node
space shown m Tab*e 18-

1

When Logo first starts up, node space extends from $800

lo SB6FF, the end being S86FF. To reserve BK bytes of node
space for your use. change Itie SB7 at the location indicated In

Table 18-1 to 597, You must remember to free up nodes in

multiples of five bytes (node length).

.AUXDEPOSIT

AUXDEPOSIT toe byte (command!

The AUXDEPOSIT command stores the value byte at address

toe tn the auxiliary bank.

Assembly-Language Primitives 1 241

.AUXEXAMINE

AUXEXAMINE Ice (operahon)

The AUXEXAMINE operation outputs the value stored at

address toe in the auxiliary bank.

.BLOAD
BLOAD pathname loc (command)

The BLOAD command loads a binary-formal ti*e. consisting of

data or assembly- language code, into address toe In the mam
bank of memory

.BSAVE
BSAVE pathname loc integer (command)

The BSAVE command copies an area of the main bank ol

computer memory to the file indicated by pathname. The
memory area transferred starts al toe for integer bytes.

.CALL

CALL loc (command)

The CALL command transfers control to the indicated

machine-language subroutine starting at address loc (decimal) rn

ine mam bank An RTS in your subroutine returns control back

to Logo

.DEPOSIT

OEPOSIT toe byte (command)

The OEPOSIT command writes Oyte into machine address toe

(decimal) in mam memory

Chapter IB: Special Primitives

.EXAMINE

EXAMINE toe (operation)

The EXAMINE operation outputs ine contents of machine

address toe (deamal) in main memory

f Special Graphics Primitives

The special graphics primitives let you rev*ew and change the

aspect ratio, the ratio of lengths of vertical turtle steps to

horizontal turtle steps. This ratio is set to 0.8 when you start up
Logo.

You will want to change this ratio if squares that you draw on
the screen appear as rectangles, and circles that you draw
appear as ellipses.

.SCRUNCH
SCRUNCH (operation)

s« wo touch setschunch The SCRUNCH operation outputs the aspect ratio, a decimal

number that is the ratio of the sue of a vertical turtle step to

the 5-ze of a horizontal one The aspect ratio is 8 when Logo
starts up

.SETSCRUNCH
SETSCRUNCH number (command)

SETSCRUNCH sets the aspect ratio to number The aspeel

ratio is the ratio of the sue of a vertical turtle step to the size of

a horizontal one tl you change me aspect ratio, the value oi

your YCOR is changed so the turtle appears th the same placo

on the screen.

Special Graphics Primitives 249

Example:

SETSCRUNCH 5 makes each vertcai turtle step half the

length of a horizontal one

SETSCRUNCH has two uses First, if squares turn out to be
rectangles, and circles turn out to be ellipses on your screen,

you can correct tins, tor most screens an aspect rat»o of 8 is

correct Second, ft you want turtle drawings to come out

squashed or extended, you can use SETSCRUNCH For

example, you can use a arete procedure to draw an ellipse.

TO CIRCLE :RADIUS
REPEAT 60 IFD :RADIUS • 3*14159 / 30 RT!
61
END

TD ELLIPSE jHORJZ :VERT
-SETSCRUNCH .8 i VERT / t KDRIZ
CIRCLE :HQR1Z
END

o o
ELLIPSE 40 U

Chapter 18: Special Primitives

Miscellaneous Primitives

This section doscr 'ties two miscellaneous primitrves,

CONTENTS and QUIT,

.CONTENTS

.CONTENTS [operation)

The CONTENTS operation outputs a list of all ODjocls that

Logo Knows about This List Includes your vanabtev procedures,
and properties, the Logo primitives, most ol the things you've

5« AcfCTflii o for mo* ,n - and some other words. .CONTENTS can use up a tot

i<xm*hon on nodv eptfCti Of node Space.

.QUIT

QUIT (command)

The QUIT command is a sate way to exit Logo it ensures thai

ail your hies are closed and everything else is sale

Miscellaneous Primitives (245

Appendix A Messages 251

I Appendix B Useful Tools 255
255 Graphics Toots

255 ARCR and ARCL
256 ClflCLER and ClRCLEL
256 POLY
257 Malh Toots

257 A8S
257 CONVERT
256 DIVISORP
258 LOG
258 LN
259 PWR
260 EXP
260 Program Logic Of Dflduggmg Tools

261 COMMENT
261 FOREVER
261 MAP
261 SORT and SUPERSORT
262 WHILE
40£ I00IS KM UKt TUUIKJ LULJO UMrf

262 DRIVE
263 TEACH

Append*hos

Appendix C Startup Fifes 267
267 Creating a Startup File

2*6 A Nolo of Caution Before You Start

2sa rne startup vanaoie

Appendix D Memory Space 271
271 How Space ts Allocated

272 Some Hints for Saving Space

Appendix E Parsing 275
275 Delimiters and Spacing

276 Infix Procedures

277 Brackets and Parentheses

277 Quotation Marks and Delimiters

278 The Minus Sign

Appendix F ASCII Character Codes 281

Appendix G Summary of Logo Primitives 285

Appendix H Using a Printer With Logo 299
300 The Software

301 Tne Computer
302 Senai iniortaces

302 Parallel Interfaces

303 The Printer

This appendix contains alt the error messages you can get

white using Logo The words Me and mme (m lowercase

letters) in this append** are replacod with the specific word m
question when the message ts displayed.

Number Moitagc

1 name IS ALREADY DEFINED

2 NUMBER TOO BIG

3 THE DISK WAS SWITCHED

6 name IS A PRIMITIVE

7 CAN T FINO LABEL name

8 CAN'T name FROM THE EDITOR

9 name IS UNDEFINED

10 name DIDN'T OUTPUT TO name

11 I M HAVING TROUBLE WITH THE DISK
number

12 DISK FULL

13 CAN T DIVIDE BY ZERO

15 FILE tile ALREADY EXISTS

16 FILE tile PROTECTED

17 FILE We NOT FOUND

18 FILE Me WRONG TYPE

Appendix A Messages ?51

Tablv A- 1. logo Muingn /ennJvxjM)

Number Message

19 TOO FEW ITEMS IN name

20 TOO MANY FILES OPEN

21 CAN'T FIND CATCH FOH name

23 OUT OF SPACE

24 namo CAN'T BE USED

25 namo IS NOT TRUE OH FALSE

26 PAUSING

27 YOU'RE AT TOPLEVEL

28 STOPPED'

29 NOT ENOUGH INPUTS TO name

30 TOO MANY INPUTS TO name

31 TOO MUCH INSIDE (| 3

33 CAN ONLY DO THAT IN A PROCEDURE

34 TURTLE OUT OF BOUNDS

35 I DON'T KNOW HOW TO name

36 name HAS NO VALUE

37 UNEXPECTED)

38 YOU DON T SAY WHAT TO DO WITH noma

40 DISK IS WRITE PROTECTED

41 name DOESN'T LIKE namo AS INPUT

44 NO FILE SELECTED

45 FILE Me NOT OPEN

46 FILE Me ALREADY OPEN

47 FILE POSITION OUT OF RANGE

DEVICE UNAVAILABLE

Appendix A: Messages

Number Message

50 ALREADY DRIBBLING

5? DEVICE number IN USE

53 FILE file TOO BIG

54 VOLUME NOT FOUND FOR file

55 SUBDIRECTORY NOT FOUND FOR Hie

56 SUBDIRECTORY name NOT EMPTY

III LOGO SYSTEM BUG If!

Stiouid noi occur Please wnie
to LCSf if it ttoes.

Appendix A Messages

13

Graphics Tools

The procedures presented here are lor your convenience when
constructing your own procedures. Some of them were defined

as eiamp*es for pnmitives and others appear here for the first

tiffiS. TH8S8 pF5cS3u[8& 3F8 3R IfiS LS§6 SlSt IR IRS lite TOOLS

it An (mrodutitnrt 10 PiogramnwQ
ttji uil Par other daflruiionfl or iTtw

procedures tfi*t dm arc* and
cwciw

You can use me procedures in this section to

• draw an arc that turns kl a right or left direction (ARCR ond

ARCLI

draw a circle that turns in

and CIRCLED

draw a potygon (POLY)

naht or left dtrectwn fCIRCLER

ARCR and ARCL
ARCR and ARCL draw right and left turn arcs, respectively

Their inputs are

RADIUS the radius of the circle from which the arc *s

taken

DEGREES the degrees of the arc (tne length of the edge!

»c Tools

TO ARCR :RAD1US ; DEGREES
LOCAL "STEP LOCAL "REM
MAKE "STEP 2 • :RADIUS • 3,1416 / 36
MAKE "REM REMAINDER : DEGREES 10
REPEAT : DEGREES / 10 IRT 5 FD :STEP RT I

51
IF :REM > IFD :STEP :REM I 10 RT ;R*
EM J

END

TO ARCL : RAD V US : DEGREES
LOCAL "STEP LOCAL "REM
MAKE "STEP 2 • iRADIUS 3.1416 / 36
MAKE "REM REMAINDER : DEGREES 10

REPEAT : DEGREES / 10 t LT S FD :STEP LT !

SI
IF j REM > [FD :STEP : REM / 10 LT :R<
EM]
END

CIRCLER and CIRCLEL

CIRCLER and CIRCLEL dta* nghl and le'l lurn circles «vith a

specified radius as mpui

TO CIRCLER :RADIU5
LOCAL "STEP
MAKE "STEP 2 • :RADIUS • 3 - 14 IS / 36
REPEAT 36 CRT 5 FD :STEP RT 5)
END

TO CIRCLEL :RAD]US
LOCAL "STEP
MAKE "STEP 2 • :RADIUS • 3.1416 / 36
REPEAT 36 [LT 5 FD :5TEP LT 5)
END

POLY
POLY draws a polygon over and over

TO POLY :SIDE : ANGLE
FD :SIDE
RT ; ANGLE
POLY ;SIDE : ANGLE
END

Aopendi* B Useful Tools

You can use the procedures in Hits section to

• llnd the absolute value of a number (ABS)

• change a number (torn one base to another {CONVERT)

• find out II one number divides evenly into a second number
(DIVISORP)

• calculate the logarithm to the base 10 ol a number (LOG)

• calculate the natural logarithm of a number (LN)

• lino the value ot a number to a given power (PVVRi

• use the natural exponential luncion (EXPi

ABS
ABS outputs the absolute value ot us wiput

TO ABS tNUM
OP IF :KUM < E-iNUMl t:NUMI
END

CONVERT
CONVERT converts IV. a number, from a base value

I FRBASEl
to another oa&e vatue (TOBASE).

TO CONVERT ;N : FR8ASE : TOBASE
OP DEC.TO.ANYBASE ANYBASE . TO . DEC : M : FR f

BASE 1 i TOBASE
END

TO AN VBASE . TO . DEC :N : BASE :P0UEB
IF CMPTYP ;N (OP 01
OP (:P0W£P • C.TD.N LAST :H> • ANYBASE.'
TO. DEC BL :N : BASE :PQWER ' : BASE
END

TO DEC . TO . ANYBASE :N : BASE
IF iN * : BASE [DP N.TO.C :N]
OP WORD DEC. TO . ANYBASE INT QUOTIENT :N !

: BASE : BASE N.TD.C REMAINDER :N iBASE
END

MiJ'.'l lUL'l'd

TD C.TO.H :H
IF HUMBERP :H IQP :N)
OP (ASCII :N> - S5
EHD

TQ H.TO.C :H
IF :N < 10 (OP :NJ
OP CHAR 5S tH
EHD

Vou can men use CONVERT to convert oecimal to hexadecimal

of hexadecimal to decimal

TO DECTOHEX tH
OP COHVERT :H ID 16
END

TD HEXTODEC :H
DP COHVERT :H 16 10
EHD

DIVISORP

DIVISORP indcatn (TRUE ot FALSE) whether its Itfat input

diwJes evenly into tts second.

TD DIVISORP :A :B
DP > REMAIHDER :B iA
EHD

LOG
LOG returns the logarithm to trie Dase 10 of an input number It

uses the LN procedure, which follows

TO LOG :X
OP 0.434294 LH :X

END

LN calculates the natural logarithm ol an input number using all

the following math procedures as subpiocedures.

TQ LN :

X

LOCAL "RLIST
IF : X < I0P (CAN'T DO LOG OF NEGATIVE!
NUMBERS I 1

Appenoi* B Uselut Tools

IF J X - 1 IDP 01
IP tX < t [MAKE "RUST ROOT (1 / :X> 1 I

-11 (MAKE "RUST ROOT :X 1 11

DP (FIRST BF :RtlST) * CLH t FIRST :RLIS(
T> / (LAST :RLIST)
END

TO ROOT :X iNPWR : CDH5T
IF :X < t.2 IDP (LIST :X : NPWR :CONST)l
OP ROOT (SORT :XJ (2 :NPUR) :COH5T
END

TO LN1 it
MAKE "X <sX - U / (:X *1>
DP 2 * <:X * (PUR iX 3J / 3 > (PUR :X !

S> / 5)
END

PWR
PWR returns the value of A to the X power If X is a traction

and A is not equal fo one, PWR uses the natural functions EXP
and UN If A is less then and X is a fraction, me result should

M complex number.

TO PWR :A :X

IF AND (:A < 0) NOT ttt INT i)tJ [PR (!
SE :A (TO POWER] ;X US A COMPLEX NUMBE

I

RM) STOP!
IF OR :A • 1 :X INT tX I0P IMTPUR (A !

:X]
OP EXP >' (LN :A> * :X)
END

TO JNTPWR :A rINTP
IF OR :A - 1 t INTP • (QP t

1

IF i INTP < IOP 1 / PWRLOOP (:A> (- : IN!

TP) J

OP PWRLOOP :A : INTP
END

TO PWRLOOP :A : INTP
IF (INTP • IDP 11

QP :A • PWRLOOP :A : INTP - 1

END

Main Tools

EXP
EXP is the natural exponential function, calculated using a
Taylor series. E ts declared a local variable to ensure that it

always contains the correct value.

TO EXP :X
LOCAL "E
MAKE "E 2.71B26
IF <:X - 1HT lX> * [OP IMTPUR iE :X]
OP CINTPWR jE IHT :X) • (1 * EFRAC <iX !

- IHT :X> 1 O
END

TO EFRAC : FRAC ;C0UNT i TERM
IF :C0UNT > 9 tOP 0)
HAKE "TERM : TERM • : FRAC / :C0UHT
OP ; TERM * EFRAC :FRAC :C0UNT * 1 :TERM
END

Try this;

*>PR PWR 2 3

8

*>PR PWR 3 2

9
''PR PWR 3

1

?PR LN 50
3.91201
''PR LN 2. 7192B

• 999999

I Program Logic or Debugging Tools

The pfocedures in this section let you

embed comments m a program (COMMENT)

• repeat a group or instructions until you hat them (FOREVER)

• app*y a command to every element of a |M (MAP)

• son a list ot words and arrange them m a flat list (SORT and
SUPERSORT)

• repeat a group of instructions until a specific condition

becomes false (WHILE).

Appendix B: Useiul Tools

COMMENT
COMMENT allows you to embed comments in youf programs In

the fcxm:

!
|THIS IS A COMMENTI

TD j : COMMENT
END

FOREVER
FOREVER repeals a group oi instructions until you press

I £ H.E>c > or turn oil the power

TO FOREVER : I NSTRUCT I ONL I ST
RUN :IHSTRUCTI0NLIST
FOREVER i I NSTRUCT I ON L I ST
END

MAP
MAP oopi'BS n command to every element of a list.

TQ MAP :CMD :LIST
IF EMPTY? : L I ST ISTOP1
RUN LIST :CMD WORD FIRST : L 1 ST
MAP :CMD BF :LtST
END

SORT
SORT takes a list ol words and outputs them alphabetically

TO SORT :ARG :LIST
IF EMPTYP : ARG tOP :LIST]
MAKE "LI5T INSERT FIRST : ARG :LI5T
DP SORT BF : ARG :LIST
END

TO INSERT t A :L

IF EMPTYP :L IOP (LIST :A)]
IF BEFOREP :A FIRST :L IOP FPUT :A :L)
OP FPUT FIRST :L INSERT :A BF :L
END

Program Logic or Debugging Tools

Try tnt5

MAKE "SORTL 1ST SORT [A D E F T C Z) t]

PR i SORTL 1ST
A C D E F T 2

Then type

MAKE "SORTL1ST SORT tFOO BAR BAZ1 ;S0RT!
LIST
PR :SORTLIST
A BAR BA? C D f F FOO T Z

WHILE

WHILE repeats a group of instructions until :CONDITfON
becomes false

TO WHILE iCONDlTIQN i I NSTRUCT 1 DHLIST
TEST RUN :CDNDITIDN
[FFAL5E ISTOP1
RUH : INSTRUCT I DHL I ST
WHILE :COHDtTIOH : I NSTRUCT I DHL I ST
END

I Tools for the Young Logo User

You can use the procedures m (his section to

• drive me turtle around me screen wrth tfie touch of a key

(DRIVE)

• define a procedure as you are running it line by line

(TEACH).

DRIVE

DRIVE lets you dnve the turtle around the screen with the touch
oi a Key Thts is an example ot s<ngie-*eypress interactive

programming

TO DRIVE
IF KEYP [LISTEN!
FD 1

DRIVE
END

Appendix B Useful Tools

TO LISTEN
MAKE "AN5 RC
IF :ANS • "S [THROW "TDPLEVELl
IF :AN5 "R [RT 101

IF :AN5 "L tLT 101
END

TEACH

TEACH lets you dellne a procedure as you ore running it line by

line By typing END. you linish defining the procedure Entering

ERASE removes the previous line from the oelmition <n
.......... uiu I:.

, |_ic null! mii uoihiihum »
progress This is especially useful when working with young
children.

TO TEACH
LOCAL "THISLINE
DEFINE "PROGRAM Ml]
CLEARSCREEN
GETLINES
NAME IT
FNI>
END

TO GETLINES
TYPE "??
MAKE "THISLINE
IF : TH I SL 1 NE
IF : TH I SL I NE -

RST :THISLINE1
GEILINES
END

TO WIPEOUT
DEFINE "PROGRAM BUTLAST TEXT "PROGRAM
CLEARSCREEN
RUN [PROGRAM]
END

TO RUNSTORE
CATCH "ERROR IRUN : THI SL I NE STORE STOP 1

PRINT FIRST BUTFIRST ERROR
END

READL1ST
(END! tSTOPI
(ERASE I IUIPEOUT] (IF<Fl!

"TQ [1 (RUNSTORE!!

Tools tor the Young Logo Use-

ra store
DEFINE "PROGRAM LPUT : THI 5L INE TEXT "PRI
GRAM
END

TO NAME IT
LOCAL "NAME
PRINT I WHAT SHOULD I CALL THIS')
MAKE "NAME READLIST
If EMPTVP : NAME [ERASE "PROGRAM STOP]
JF DEFINEDP FIRST : NAME [TRY AGA IN] [COP!
Y

)

END

TO TRYAGAIN
PRINT SENTENCE FIRST : NAME (IS ALREADY >

DEFINED.

I

PRINT [)

NAME IT
END

TO COPY
DEFINE FIRST :NAME TEXT "PROGRAM
PRINT SENTENCE FIRST : NAME [DEFINED!
ERASE "PROGRAM
END

Appendix B Useful Toots

Qi

A

a

ft

O

This appendix describes the feature of Logo thai lets you
automatically load a file into your workspace when you start up
Logo You musl call the file STARTUP There can be only one
file with the name STARTUP, although it can include commands
to load other Mas The disk with the STARTUP ftie must be in

drive t when you press (return] from the title display

B Creating a Startup File

Before placing a procedure in the STARTUP file, you must l»rst

enter the procedure into your workspace. Vou do so either by
typing procedures In or by loading them from another file. For

instance, you might want to transfer something from the TOOLS
file into the new STARTUP lile. To check your workspace, type

POTS.

You see the list of procedures that you just added, whether Dy
keyboard entry or from another file, and the procedures that

were previously m your workspace. At this point, you can save
the new file with the name STARTUP.

However if some procedures are burled when a file is loaded,

POTS does not show you their names, and you can t save or
erase them The reason for this rs that the globa* workspace
commands SAVE. ERALL. and ERPS don't erase buried
procedures (that's the reason for burying them'). To use tne

ERALL. ERPS, or SAVE command successfully on buried
procedures, they must first be unburied

Creating a Startup File

To see oil the procedure names. KicJuding any buried

procedures, type

UNBURYALL
POTS

Erasing tnese procedures *s the same as erasing others* just

specify thi procedure names m a list following the ERASE
command Saving them individually onto a disk ts similar just

put ihe names you want to save in a usi 'or the SAVEL
command Only those procedures will be saved, regardless of

whether they're Duned or not However en the unbuned names
will also be saved* so check the names mi you' workspace with

PONS before using SAVEL

A Note of Caution Before You Start

It you already have a STARTUP Rh and you are about to create

a new one to use in its place, you run the risk of losing useful

procedures. Even if you want to do this, you might like the old

procedures back some time (when a newcomer ts trying Logo,

for eiample).

So, before proceeding, you may want to save your old

STARTUP file on a disk by gnring it the name OLDSTARTUP or

something like that To change the name ol any file, use the

RENAME command in this case* type

RENAME "STARTUP "OLDSTARTUP

Having done IhaL type

SAVE "STARTUP

All the procedures you (ust saved will be loaded m your

computer and will be ready to use after you press f
Irom the title display.

The STARTUP Variable

Logo has a speciaJ variable named STARTUP. Any file,

including the STARTUP file, can contain a STARTUP variable

The first thing Logo does after loading a STARTUP trie IS to

took tor the STARTUP variable it one ernsts, Logo runs the

contents of Ihe vanable The contents of Ihe STARTUP variable

must be a list

Appends C: Startup Res

H you toad your STARTUP file in your workspace, type

MAKE "STARTUP [PR [GOOD MORN I NG J

)

Logo saves the STARTUP variable and lis contents when you
tei* it io save your new STARTUP Me. Tnen, wnenove* you start

up Logo, your computer will greet you with GOOD MORNING
before saying WELCOME TO LOGO

It's easier to use the EDfTFILE command to edit a tile and add
a variable such as STARTUP To add a STARTUP variables to a

STARTUP file this way. type

EDITF1LE "STARTUP

Trie entire file contents will appear in the Logo Editor, Move 10

the bottom of the file (where the variables are stored) and add a

line like this:

MAKE "STARTUP [WELCOME]

Then move the cursor back up into the area where procedures
are stored t begin a new line, and type something like ttus:

TO WELCOME
LOCAL "ANSWER
PR [Hello again, Eric !

]

TYPE [How are you today -*]

MAKE "ANSWER RW
IF MEMBERP : ANSWER [FINE OK GREAT! [PR »

[I'm happy to hear that] STOP]
PR (Well, let'i hope LogoMng will help!
1

END

To summarize. Logo looks lor a lit© called STARTUP on the

d'5k in drive 1. If Logo finds the file. Logo loads it and then

looks tor a variable caltod STARTUP. If the variable exists,

Logo runs us contents

Creating a Sinnup File

p

x
a

Logo procedures and variables take up space: more space is

used when trie procedures are run. This appendix tells you how
Logo allocates memory space and how you can use less ol that

space.

in general you need not worry about saving space Instead you
should try to write procedures as clearly and elegantly as

possible However, we recogmze that Apple Logo has only a

finite memory For this reason, you might want lo know how
Logo manages its memory space.

I How Space Is Allocated

Logo allocates space in node*, each of which *s live bytes

long. All Logo objects and procedures are built out of nodes
Every Logo word used is stored only once: all occurrences of

lhat word are actually pointers to the word

Logo allocates nodes in ihis way:

e A literal word takes up one node for every two characters

• A va/iable name and a procedure name each take up three

nodes plus the size of the name

• A property list takes up three nodes plus two nodes for each
property plus the size of the property list itself.

• A number, whether integer or decimal, takes up one node*

• A list takes up one node for each elemenl plus (he size of

the element itself

Mow Space Is Allocated

The internal workings at Logo otso use nodes The Interpreter

knows about certain Iree nodes mat are available tor use When
mere are no more free nodes, a special pan ol Logo called me
garbage collector looks throi>gh an me nodes and reclaims any

nodes thai ate not being used

Example:

MAKE "NUMBER 7

MAKE "NUMBER 90

When Logo executes MAKE "NUMBER 7, It assigns NUMBER
to one node, which hold the value 7 After executing MAKE
"NUMBER 90. Logo can reuse the nodes containing the 7.

Logo will reciafm those nodes as free nodes the next time the

garbage collector runs The garbage collector runs automatically

when necessary but you can make it run with the Logo

The operation NODES outputs the number ol fre* nodes;

If you find mat you are running out ol space, you might want lo

rewrite your program so thai it uses less space Consider these

• Use procedures to replace repetitive sections ol the

program.

• Avotd creating new words. To save space, you can use the

names of inputs ol one procedure as me names ol inputs of

oiher procedures. You can also use me names ol

procedures and primitives as vanable names.

• Remember that it is bad form to try to save space by using

short or obscure words m your procedures Doing so may
save space, but it makes me procedures toss readable

Fg» e dfltcnQrion o* Pie RECYClt
command we enactor H command RECYCLE

programming lips

21? Appendu D Memory Space

o

a

This appendix will tielp you understand how Logo parses lines

Parsing works like (his wtien you type a line in Logo, Logo
recognizes the characters as words and lists, and builds a list

that is Logo s internal representation of the Ime. To see the

parsing effect, type the tine in a procedure definition with the

command TO and use the Logo Editor to see the result.

H Delimiters and Spacing

A word is usually delimited by spaces Thts means thai there is

a space before the wed and a space after the word; they set

the word off from the rest of the line. There are moie delimiting

characters besides the space:

I m = <> +

You need not type a space between a word and any of these

characters. For e<amp*o. to find oul how mis line is parsed:

IF 1<2CPRINT<3*4>*5nPRTNT iX*G)

type

*T0 TESTIT
>IF 1<2[PRINT(3*4>»5JCPR1NT :*-Gl
>END

?ED "TEST 1

T

[Delimiters and Spacing

The screen will look like this:

H^HHI LOGO EDITOR

TO TEST I

T

IF 1 < 2 [PRINT
X • 6)
END

C 3 * > S) [PRINT : -

a-A accept, help, O-ESC cancel

To treat any of tho characters mentioned above as a normal
alphabetic character, put a backslash (\) before It For example

*PRINT "GOODV-BYE
oaao-Bve
SPRINT "SAN\ FRANC 1 SCO
SAN FRANC I SCO

Infix Procedures

The lonowing characters are the names ot infix procedures. You
wnte the name between the two inputs, but Logo considers the

procedures <o have two inputs,

+ -•/-<>

Appendix E: Parsing

I Brackets and Parentheses

The left bracket (|) and nght bracket <|) characters indicate the

start and end ot a list or sublist.

Parentheses group th»ng9 In ways Logo ordinarily would not,

and vary the numDer of inputs tor certain pnmitives

H you reach ine end ol a Logo un©—thai is, you press

m iu«r* i ijr^j Brackets ur paM*ntfii>sp-:f at** Mil Qptfl LtiQQ

cioses alt sublists or expresses. For example

^REPEAT * [PRIHT (THIS (IS (A C TEST
THIS (IS tA I TEST 1

THIS 115 (A [TEST)
THIS (IS (A [TEST]
THIS [IS [A [TE5T

1

II Logo finds a right bracket for which there was no
corresponding leti bracket. Logo stops execution of the rest of

the DM or procedure For example:

*1PRINT "ABC
1

B Quotation Marks and Delimiters

Normally, you have to put a backslash (\) before the characters

1, |* (t) *
* -i ** *• <i >• *nd \ Itself. But the first character

after a quotation mark O does not need to have a backslash

preceding It For example:

'PRINT

Ouoiation Marts and Delimiters

If a delimiter occupies any position but the first one after the

quotation mark, it must have a backslash preceding it For
example:

"'PR I NT
HOT ENOUGH INPUTS TO •

The only exception to the above general rule is brackeis (| |), If

you want to put a quotation mark before a bracket, you must
atways include a backslash between the quotation mark and the
bracket Fot example:

*PRIHT -I
YOU DON'T SAY UHAT TO DO WITH [1

"'PR I NT "\|

c

The Minus Sign

The way m wh*ch Logo parses the minus sign (-> is an unusual
case The problem here is that the minus sign character ts used
to represent three different things;

• pan of a number 10 indicate that <t is negative, as in -3

• a procedure of one input, called unary minus, which outputs

the additive inverse of us input, as In -XCOfl or -iDISTANCE

• a procedure of two inputs, which outputs the difference

between lis first input and its second, as in 7 - 3 and
XCOR - YCOfl.

The parser ir >os to bo clever about this potential ambiguity and
figures out which of the three uses is meant, using the following

rutes:

1. If the minus sign immediately precedes a number, and
follows any delimiter (including a space) except nght

parenthesis. Logo parses the number as a negative number
This allows the following behavior

PR I NT 3 - 1 parses as 3 times negative 1

PRINT 3 # -4 parses as 3 limes negative 4

FIRST C * 3 4) outputs -

FIRST r-3 43 outputs-3

?7n\ Appendix E Parsing

2. II the m\nus sign is preceded by a numeric expression, it

works like an infix procedure For e«ample:

PR 3-4 te-1

PR XCCJR - YCOR

The lollowing are interpreted the same

MAKE °A SE XCQR - YCOR 3

MAKE "A SE XCDR -YCOR 3

MAKE "A 5E XCDR-YCOR 3

3. 11 the minus sign is not preceded by a numeric expfessioa it

works like a unary minus- For example:

PR -JfCOR

PR -C3+4>

The Minus Srgn

This appendix contains a chart of American Standard Code 'or

Information Interchange (ASCII) code values <>n decimal) lor ail

characters in Logo. Note that characters can be

• normal (white characters on black background)

• Inverse video (black characters on white background),

Tarjie F-i shows the ASCII codes to* normal crwacters.

Table F*2 shows the ASCII codes for characters m inverse

video.

To change a normal chamber to inverse, use the following

procedure*

TO INVERSE : CHAR
IT (ASCII :CHAR) > 127 IOP iCHARJ
IF OR (ASCII : CHAR) < 64 AND (ASCII :CHAR<
> > 96 (ASCII :CHAR> < 126 (OP CHAR 128 *'

ASCII : CHAR] [OP CHAR 64 * ASCII :CHAR]
END

Appendix F ASCIt Character Codes

ASCU char ASCII char
code code

u fSl 1*1

1
A i

D lit

J
1- -j .- MM

4 n*- 36
F 37

w F 38 1

7 G 39

s H 40
9 1 41

P

10 A? *

1 * 4
L

i
4-

12 1 U
T T i

13 HI 1 1 |RN 45
14 N* 46
15* Ow 47 1

i

16 p dft

u 1
1

18 H 50 2

(9 S 51 3

20 T 52 4

21 U 53 5

22 V 54 B

23 w 55 7
24 x 56 B

25 V 57 S

26 z 58 •

27 69
28 60 i

29
1

61

30 62 >
31 83 7

ASCII char ASCII char
codo code

Ait
Ifi' 7U

l

£A03 Q7 a
DO n ufl I*.

0/ JO c

bftv 100 rtu
ss p 1Q1

70 102 1

71 G 103

72 H 104 u
73

ft*
1
i

74* * J 1w
75 K 107IMF I

76 L IQfl

77 M If

70 Mn 1 10 n

79 n 111 w

60WW pr 112 ri
W

01ol Ml
1 13

H 1 14 r

83 s 115 8
84 I 116 1

85 u 117 U

B6 V 118 V

B7 w 119 w
BS X 120 K

B9 ¥ 121 y
90 z 122 2

91
1

123
i

92 \ 124

93
1

125
I94 A 126

95 127 Bo!

Appendix F ASCII Character Cooes

r.*&v f*a. asci* Code* x>smm CrwacJm

A5CII chat ASCII char
COGC (, C)(lf>

128 @ 160 SPACI
129 A 161 l

130 8 162

131 C 163 *

132 D 164 s

133 E 165 %
131 F 166 A
135 G 167

136 H 168
(

137 1 169
1

138 J 170

139 K 171 1

140 L 172
1

141 M 173
142 N 174

143 175
/

144 P 176

145 Q 177 1

146 R 17B 2

147 5 179 3

146 T 160 4

149 u 181 5

150 V 182 6

151 w 183 7
152 X 184 8

153 V 185 g

154 z 186

155
1

187
1

156 \ 188 <

157
1

189

158 A 190 7
159 191

ASCII Mouse ASCII char
code Text code

"92 224 i

193 225 a
194 226
195 2 227 e
196 228 d
197 a 229 •
198 230 i

199 231 a

200 <- 232 h
201 233 i

202 234
j

203 1 235 k
204 236 1

205 J 237 m
206 238 n

207 :+ 239

208 +: 240 P
209 241 l

l

210 242 F

211 243 •
212 L 244 t

213 -» 245 II

214 I 246 V
215 247

216 c 248

217 249 V
218 I 250 z

219 251 i

220 252
221 253 y
222 3 254

223 1 255 Blot

Appendu F: ASOI Cnafscte* Codes

c

Q

Parentheses around an input Indicate lhat the input js optional

A number sign (#) indicates a procedure thai can take any
number ol inputs; il you give II other than the number indicated,

you must enclose the entire expression >n parentheses

ALLOPEN

#AND predl pred?

ARCTAN number

ASCII char

AUXOEPOSIT toe byte

.AUXEXAMINE foe

BACK. BK distance

BACKGROUND. BG

BEFOREP woedl wotdZ

BLOAO pathname toe

Outputs a list of the riles that

are currently open

Outputs TRUE il ah of lis

inputs afe TRUE

Outputs the arctangent ot

number in degrees.

Outputs the ASCII code tor

the character char

Stores the value byte at

address toe In the auxiliary

bank.

Outputs the value stored at foe

m the auxiliary bank.

Moves the turtle distance

steps back-

Outputs a number
representing the background

color.

Outputs TRUE M wordl comes
before word? according to the

ASCII code

Loads an assemoJy -language

file into memory at foe.

Append!* G: Summary ol Logo Primitives

BSAVE pathname toe mtogvr

BURY nameihsQ

BURYALL

BURVNAME namefttstt

BUTFlRST, BF ofy

BUTLAST. BL oh/

BLfTTONP paddlenumber

.CALL toe

CATALOG

CATCH name hsi

CHAR Mteger

CLEAN

CLEARSCREEN, CS

CLEARTEXT, CT

CLOSE m

Saves memory region (starting

at toe for integer bytes) into

the Ml indicated by pathname

Buries all procedures

contained in namefbsfl

Bunes all procedures and
variaWes contained in the

workspace.

Buries the variable name(s)

contained in the name{ltsfi

Outputs all but the first

element of Its input

Outputs all but the last

element of its input.

Outputs TRUE it the button on
the indicated paddle is down.

FALSE H it Is up

Calls the machme-langu&go
subroutine at address toe

Displays the names ol tiles In

the curront directory and the

number of blocks used by
each.

Runs frst returns when
THROW name is run.

Outputs the character whose
ASCII code is integer

Erases the graphics screen

without affecting the turtle.

Erases the screen, moves the

turtle to |0 0| t
and sets the

heading to 0.

Clears the text portion of the

screen.

Closes a currently opened file

or device.

Appendix G; Summary of Logo Primitives

CLOSEALL

CO

CONTENTS

COPYDEF name newname

COS degrees

COUNT obf

CHEATEDIR pathname

CURSOR

DEFINE name hst

OEFINEDP word

DEPOSIT tactiyte

DIFFERENCE Humbert
number2

DOT *corycor\

DOJP\MCorycor\

DRIBBLE file

EDIT. ED (nvnefftty

Closes all currently opened
files and devices.

Resumes a procedure after a

pause-

Outputs a list of ail names*

procedure names, and other

words in the workspace.

Copies the definition of name
onto newname.

Outputs the cosine of degrees

Outputs the number of

elements in its input

Creates a subdirectory named
by the last element of

pathname.

Outputs the position of the

cursor

Wakes ttst the definition of

name

Outputs TRUE it word is the

name of a procedure.

Stores the value byte at

address toe

Outputs number2 subtracted

from number 1

Puts a dot at the specified

coordinates.

Outputs TRUE if there Is a dot

on the screen at the specified

coordinates.

Sends a copy of whatever text

Is printed on the screen to the

specified file or device

Staris the Logo Editor

(containing the named
procedure^)).

Appendix G Summary ol Logo Primitives

EDITFiLE pathname

EON narneflsft

EONS

EMPTVP oPj

EOUALP Qtyl Qt>f2

ERALL

ERASE. ER nanwtltsf)

ERASEFILE. ERF pathname

ERN nammttsf)

ERNS

FRPROPS

ERPS

ERROR

EXAMINE toe

FENCE

FILELEN pathname

FILEP pathname

Appendix G: Summary of Logo

Starts the Logo Editor with the

contents ol the ftte Indwrated

Dy pathname

Starts the Logo Edrtor

containing the named
*ariable(5}-

Starts the Logo Editor

containing all variables in the

workspace.

Outputs TRUE il oty Is the

amply list or the empty word

Outputs TRUE it its mputs are

squai

Erases everything in the

workspace

Bases the named
procedures)

Erases the Mo md*caied by
pathname from the disk.

Erases the named variables)

Erases the variables m the

workspace

Erases all properties from the

workspace.

Erases all the procedures in

Ite W9rH§tBG§;

Outputs a four-element list of

information about the most
recent error.

Outputs the byte stored at

address toe

Fences the turtle within the

edges ol the screen.

Outputs the length in bytes of

the file indicated by pathname

Outputs TRUE it the hie

irvd»coied exists.

Primitives

FILL

FIRST obf

FORM number field prooston

FORWARD. FD distance

FPUT ofy Hst

FULLSCREEN. FS

GO won)

GPROP name prop

HEADING

HELP word

HtDETURTLE. HT

HOME

IF predltstl (&f£)

IFFALSE, IFF list

Fills the shape enclosing the

turtle with the current pen
cotor II the turtle is not

enclosed, the background 15

tilled.

Outputs the first element of its

input

Outputs nomter m ftffW

spaces with preci$>oa digits

after the decimal point

Move* the turtle distance

steps forward

Outputs a list formed by

putting its first input in front of

list

Devotes the entire screen to

graphics. Same as

Transfers controt to LABEL
word.

Outputs prop property of

name

Outputs the turtle s heading

(its direction) in degrees

Pnnts the inputs for the

primitive or procedure

indicated.

Makes the turtle invisible

Moves the turtle to |0 0| and

sets the heading to

H pred rs TRUE, runs hstJ.

otherwise, runs hst2.

Runs Itst if the most recent

TEST was FALSE It no lest

has been made, the list ts not

run

Appendix G: Summary of Logo Primitives

IFTRUE, 1FT list

IN7 number

INTQUDTIENr integer f

integer?

ITEM integer oiy

KEYP

LABEL word

LAST obj

LEFT
H
LT degrees

ffUSToCyr oofi

LISTP oD,

LOAD pathname

LOADHELP pathname

LOADPIC pathname

LOCAL namttttsn

LOWERCASE word

LPUT 00/ Ust

MAKE name op,

Runs itst if the most recent

TEST was TRUE M no test

has been made, the list is not

run.

Outputs tho Integer portion of

number.

Outputs integer 1 divided by
mtegcrZ. truncated to an
integer.

Outputs the element whose
position in obf is integer

Outputs TRUE if a key has

been pressed but not yet read

Creates a labeled line for use

by GO.

Outputs the last element ol its

input.

Turns the turtle degrees left

(counterclockwise)

Outputs a list ot Us inputs,

preserving their list structure

Outputs TRUE *f ofi/ls a list.

Loads the tile indicated into

the workspace.

Loads the file named Tito the

helpscreen area of memory so
It will appear when | C Kl)
pressed.

Loads the screen image in the

Me indicated directly onto the

screen.

Makes namefhstt local

Outputs word in ail lowercase

letters.

Outputs a nsi formed by

putting its first Input after t>st.

Gives the value oh/ to the

v&naDie name

290 Appendix G: Summary of Logo Primitives

MEMBER ol)/1 ob}2

MEMBERP Ot>}1 ot>t2

NAME obi

NAMEP word

NODES

NOORIGBLE

NOT pred

NUMBERP obj

ONLINE

OPEN Ate

#OR predl pred2

OUTPUT OP obf

PADDLE paddlenumber

PARSE word

PAUSE

PEN

PENCOLOR PC

PENDOWN. PO

PENERASE. PE

PENREVERSE PX

Output* the pan of obj2 that

sorts with ob/t

Outputs TRUE if Its first Input

is an element of its second

input

Makes obj the value of name

Outputs TRUE if word has a

value

Outputs the number of Wee
nodes.

Closes a dribble fife

Outputs TRUE it prod is

FALSE.

Outputs TRUE *! Otyis a

number

bsts the disk volumes on line.

Opens flh so it can send or

receive characters.

Outputs TRUE if any ol rts

inputs ore TRUE

Reiurns control to the calling

procedure, with oO/ as output

Outputs the rotation ol the d<ai

on the indicated paddle

Outputs a itst obtained from

parsing word.

Makes a procedure pause

Outputs the pen slate (PD.

PU. PE. PX)

Outputs a number
representing the pen coto*

Puts the pen down

Puts the eraser down

Puts the revering pen down

Append* G Summary of Logo Primitives 291

PENUP, PU

PLIST name

PO namsihstt

POALL

POFILE pathname

PON nameittstl

PONS

POPS

POS

POT nameittsr)

POTS

PPROP name prop ot>t

PPS

PREFIX

PRIMmVEP woro

Raises ttie pen.

Outputs the property list of

name

Pnnts definitions of the named
procedurefs)

Prints definitions of all

procedures and variables m
the workspace

Prints out the contents of the

(ile indicated

Prints ttie name(s) and value(s)

ol the vanawe(s) Haled.

Prints the names and values

of aM unburled variables in the

workspace.

Prints definitions of aM

unboned procedures In the

workspace

Outputs the position of the

turtle In coordinates.

Prims the title line(s) of the

named procedure)si

Prints Ihe title lines of all

unburied procedures in Ihe

workspace.

Gives name the properly prop
with the value obj

Pnnls property ListfsJ of

everything In the workspace.

Outputs the current ProDOS
prefu. most recentJy set with

SETPREFIX,

Outputs TRUE II wOrtf is a

primitive

Appendu G: Summary of Logo Primitives

SPRINT. PR obf

PRiNTPJC tnteger

#PRODUCT number!
number2

ourr

QUOTIENT number 1 number2

RANDOM integer

READCHAR. RC

READCHARS. RCS integer

HEADER

READLIST, RL

READPOS

READWORD, RW

RECYCLE

Pnnts its mpm followed by a

carnage return and linefeed

(strips ofl the ouler brackets

of lists).

Pnnts the graphics saeen to

the printer in mtoger stot or

port

Outputs the product of its

inputs.

Quits Logo and releases

control 10 ProDOS,

Outputs number 1 divided by
numGer2 The result is a
decimal number

Outputs a random
nonnegative integer less than

integer

Outputs the character read

from tne current file or device

(defauli *s ihe keyboard)

Waits lor input, if necessary.

Outputs integer characters

read from tne current tile or

device (default is the

Keyboard). Waits for input, il

necessary.

Outputs the current file

:^n--: (oi 'F.:,SL:ifj

Outputs the Itne read from the

current file or device (default

is the keyboard! Wails tor

input, it necessary

Outputs the file position of the

current file being read.

Outputs the line read by the

curtent device (default is the

keyboard) after a carriage

return

Performs a garbage collection.

Appendu G: Summary of Logo Primitives

REMAINDER tntegert <nteger2

REMPROP name prop

RENAME pathname
newpathname

REPEAT integer bst

RERANDOM

RIGHT. RT degrees

ROUND number

RUN hst

SAVE pathname

SAVEL n&meittsfi pathname

SAVEPIC pathname

SCRUNCH

^SENTENCE, SE objl obf2

SETBG cotornumber

5ETCURSOR {column

tmenum\

SETHEADING. SETH degrees

SETPC cotornumber

Outputs tho remainder of

*nteger t divided by tnteger2

Removes property prop from

me property l*st of name.

Renames pathname to

newpathname (both flies must
be closed).

Runs ttst integer times

Makes RANDOM behave
reproducibly

Turns the turtle degrees right

(clockwise).

Outputs number rounded off

to the nearest integer.

Runs for, outputs what list

outputs.

Writes the whole workspace

onto the file indicated by

pathname

Saves the named procedures

and any unbuned variables in

the indicated frio

Saves the picture on the

screen in the fite indicated.

Outputs the current aspect

ratw of the screen

Outputs a list of its inputs.

Sets the background to the

color represented by

cotornumber

Puts the cursor at the position

specified by \coiumn ftnenumj.

Sets the turtle s heading to

degrees.

Sots the pen cokx to

cotornumber.

Appendix G: Summary of Logo Pnmihves

SETPOS [xcor year)

SETPREFIX pathname

SETREAD ftte

SETREADPOS integer

SETSCRUNCH number

SETWIDTH width

SETWRITE Ato

SETWRITEPOS integer

SETX MCOr

SETY ycor

SHOW o&f

SHOWNP

SHOWTURTLE, ST

SIN degrees

SPLITSCREEN. SS

SORT number

STEP nameittst)

Moves the turtle to the

coordinates specified.

Sets the ProDOS prefix

Sets the tile from which the

output of RC. RCS. RL and

RW will be read.

Sets the tile position tor

reading the current i<le

Sets the aspect ratio o' the

screen to number

Sets the screen width to

width, either 40 or

60 columns

Sols the destination of inputs

to PRINT. TYPE, SHOW.

Sets the file position for

writing into the current file

Moves the turtle horizontally

so that the (-coordinate is

xcor.

Moves Ihe turtle vertically so

mat the y-coordinate <s ycor.

Prints its input followed by a

carriage return (with brackets

tor ftsay

Outputs TRUE il the turtle is

shown.

Makes the turtle -sibfe

Outputs the sme of degrees.

Allows text and graphics on
the same screen Same as

Outputs the square root of

number

Causes the procedure(s) to

omocuIo one line at a time-

Appendix G Summary of Logo Pnmitives 295

STOP

#SUM number t number?

TEST pred

TEXT name

TEXTSCREEN. TS

THING name

THROW name

TO name (*nputs\

TOOT frequency duration

TOWARDS \xcoryeOf)

TRACE nameftisn

0TYPE otoj

UNBURY narrmtisf)

UNBURYALL

UNBURYNAME /wmfAsi)

UNSTEP namelfist)

UNTRACE namttust)

UPPERCASE *ord

Stops the procedure and
returns control to the caller

Outputs the sum of its Inputs

Determines whether pred ts

TRUE Of FALSE.

Outputs the definition of

procedure name as a list.

Devotes Ihe entire screen to

text. Same as fcQ>jmtx^XT)

Outputs trie value of name.

Transfers control to the

corresponding CATCH.

Begins tne definition of name.

Produces a sound of

frequency tor duration.

Outputs tne heading the turtle

would have if lacing the

coordinates specified.

Causes tracing information to

be printed for traced

procedure^).

Prints its input (strips off the

outer brackets of lists)

Untiunes me procedures) in

nameittst)

Undunes ail the procedures

and variables buned In fhe

workspace,

Unbunes the variable namets)

in naroe(frsfl

Ends ihe stepping of named
procedure(s|

Ends the tracing of named
procedure^)

Outputs rttvrf in ail uppercase
letters

Appendix G Summary of Logo Primitives

WAIT integer

WIDTH

WINDOW

#WORD wordt wonSS

WORDP ob}

WRAP

WRITEPOS

WRITER

XCOR

YCOR

numbert * number?

number) - number?

number t
* number2

number! | number2

number 1 < number?

Qtyt - obfP

numbert > number2

Pauses tot approximately

tnteger 60lhs of a secorxl

Gives Xhe current setting of

the screen width, either 40 or

80 characters wxJe.

Makes the turtle field

unbounded.

Outputs a word made up of Its

Inputs.

Outputs TRUE If obj *s a word-

Makes the turtle field wrap
around the edges of the

screen

Outputs the fite position of the

current file being written 1o

Outputs the current file open
for writing

Outputs the a-coordinate ol

the turtle

Outputs the y-coordtnare of

the turtle

Outputs number! plus

numbers

Outputs numbert minus

number?.

Outputs numbert times

number2.

Outputs numbert divided by
number2.

Outputs TRUE it numbert is

less than number?

Outputs TRUE If ob/1 ts equal

to objZ

Outputs TRUE if numbert is

greater than number2.

Appendix G; Summary of Logo Primitives

D

3

Here are some notes to help you gel your printer working

properly *ilh Logo, if you are successfully using your printer

from Logo, then you don t need 10 read any further

II you are having printing proDtoms. there are generally only

three areas mat you need to check to identity and correct the

problem

• the software—your program

• the computer s configuration including its interface card or

built-in port

• the printer's contouranon, including its connecting cable

Tab*e H-1 gives common symptoms of pnnier proWems and
possible causes for each of ihem

faWf/M. Print** Pru&ftnw *ntiOman

Problem Possible Cause
(See Section)

No printing at all Software (programming) error

(The Software)

Computar or tnlarface card

incorrectly configured or

installed

(The Computer)

Printer incorrectly set up or

configured

(The Printer)

Appendix H; Using a Printer With Logo

Problem

Incorrect printing

Possible Cause
(See Section)

Computer or interlace card

incorrectly configured

(The Computer!

Wrong interlace caWe
(The Computer)

Printer incorrectly configured

(The Printer)

Identify the type of error thai you are observing, then go to the

appropriate sections of this appendix to find more information

and suggestions for fixing the problems.

II you follow all the suggestions and none of tnem turns out to

be the cause of the problem, there may be something wrong
with the equipment, in this case, take trie printer and computer

to your dealer to be thoroughly checked out and repaired, II

necessary

I The Software

For mot iriiormattin. fee Chapiei If you can use your printer successfully with programs or
10 languages other than Logo, it is likely that We problem lies with

your Logo program Logo treats all input and output operations

as files This means that before you can send information to the

printer (referred to by the slot or port that it is connected to)

you must open it for use and then se*ect it as the current writer.

Assuming that your punter 15 connected to slot or port 1. this

program win send text to the pnnter:

OPEN 1 SETWRITE 1

PR ITHI5 IS A TEST:

]

PR I I F IT WORKS, SEND OUT FOR PIZZA!]
CLOSE 1 5ETWRITE 11

OPEN 1 opens slot or port 1 for use, while SETWRITE 1

selects stol or port 1 as trie current wnter. Any PRINT. TYPE,
or SHOW statements after tins pnnts to the current wnter, now
the printer The last line of the program closes the printer fife

and resets the current writer back to the screen

Append.* H Using a Printer With Logo

Not*: If your printer is connected to a different slot, use that

slot number instead of the 1's used in this program. When
you finish printing, you must dose trie printer file and reset

the current writer lo the saoen

Remember that while up to six files can be open lor use at one
time, only one of these can be a slol or port.

Th& Computer

Hoi** 10 your aerial cud * manual Start your hardware checks with the computer and the printer
(cu *p«»fc conr.gu.arxm Interface card.
informalon

Logo treats the printer interface in the same way that Apple II

Pascal version 1.1 does. Any card that does not conform to

the Apple II Pascal protocol such as the Apple II Parallel

Interface Card, cannot readily be made to work with Logo. If

you have an Apple It Parallel interface Card, see your dealer

for hoip rn making it work with Logo. If you have any
questions about another interface card, refer them to mar
card's manufacturer.

it you re using an Apple He. make sure that the interface card ts

properly plugged Into one of the computer's slots, usually

slot l M you're using an Apple He. you must connect the pnnter

to senal port 1 1

if you have a serial printer such as the Apple Imagewriter. read

the section ^Serial Interfaces
r

if you have a parallel printer such
as the Apple Dot Matrix Printer, skip to the section "Parallel

Interfaces*

The Computer

Serial Interfaces

n*tei jo bofli ffie pnnic* * and
mtvrtK* card % reference manual*
10 hnd Out how tow them up and
1o set ilw tetpeciive

A serial interface is primanly defined by the following

characteristics:

• Data rale—how fast me information (lows, measured in baud

• Data format—how the information is organized for

transmission the number of frts per character, parity

scheme, and numoer ol stop Diis

• Other things affecting the printer s operation include whotner

or not output is echoed to the screen, line feeds are

appended to tne ends of lines ol text, and transmitted teat ts

broken into tines of a given length

When you turn on an Apple fie. serial port 1 ts automatically

configured to match the factory*set configuration of the App*e

Imagewriter printer:

• 9600 baud data rate

• B-bit no panty, two stop-bit data format

• No auto line teed

If you have an Apple lie, you normally set your serial interface

card to the same configuration as (hat of me Apple lie s serial

port 1.

If your interface card can t operate as fast as 9600 baud, set

(1 to run at its fastest rate and change the printer s

configuration to match the interface card s.

Now you can test your printer by running the program given in

section "The Software '
If your printer still doesn t wort, skip to

section "The Printer/

Parallel Interfaces
rffrmrcf imtr/i«fv**

it you have an Apple lie, this section doesn't apply.

Make sure that the interface card is correctly plugged m.

Connect the printer interface cable to the card and then to the

printer as described in the interface card manual. Chech the

interface card s switches, if any. and set them as described In

its reference manual io match your printer's configuration

Appendii H: Using a Printer With Logo

I The Printer

Make sure the printer is properly plugged into both the wall

power socket and the printer Interface cable. After setting any
configuration switches as required to match the configuration of

the interface being used, you are ready to test the printer.

Your printer may print text properly but not pnnt graphics

when using PRINTPtC. To print graphics. PRINTPIC needs

an Apple Imagewriter. an Apple Oot Matrix Printer, or a

compatable printer and an interface card such as the Super
aerial carp, tor example, wnose rim iware tqimjw* tne

conventions used by the Apple lie 3 serial port 1 If you have

an Apple Dot Matrix Printer and an Apple tl Parallel Interface

card, see your deaier to get the printer to work with Logo

Now turn on your Apple II and the printer. Try to print some
text using the test program in section *The Software ? If nothing

happens, check the following items:

e Has the printer run out of paper? Is The printer cover on

phnter at the end of the nbbon?

• (s the printer on-line and selected? Some pnnters are set

oH-hne, or deselected, when you replace paper or ribbons or

advance the paper After finishing one of these operations,

the printer must be set back online, or selected (usually by
pressing a button on the 'Font panel), before you can
continue printing

• Are all interface and power connections properly set up? Is

the punter's luse blown**

• Arc ari configuration switches on the interface card and the

printer set for the same values'7 Refer to the respective

devices reference manuals for the switch setings

• Does the interlace card have a configuration block? Is it the

correct configuration block' Has i! been installed correctly?

Could the interface cable have been installed upside-down?

• Have you checked an the Hems listed above? If there is stilt

no printing, see your deafer

5** C*aoh»' 16 lor more aooui
PRINTPIC

The Printer

rr the punier outputs gibbensh or (ust 'hiccoughs.' check the

data rate and data lormal settings of the interlace and printer

Make sure thai they match. Make sure that you have the proper

interlace cable.

It lext *s being over-printed, set the pnnler to generate a line

leed character after each fine It text is always double- spaced,

reset the printer to not generate a line leed after a carnage

return-

Unexpected typefaces, such as double-width or very smalt

characters are probably caused by incorrect printer switch

settings

For any remaining problems, refer to the trouble-shooting

section of your printer s reference manual

= 3A Appendix H UsJng a Printer Wrth Logo

addr*«*i Trie location of a register, a particular pan of

memory, or some other data source or destination.

Amerlcal Standard Code for Information Interchange
(ASCII); Trie standard codo used Tor exchanging information

about data processing systems and associated equipment

ASCII: 5*f* Americal Standard Code for Information
Interchange

ASCII file: a te<t file whose characters are represented in

ASCII codes.

aspect ratio: A deomat number that is the ratio of the size of

a vertical turtle step to the size ol a horizontal one.

binary: Something that has two possible values or states.

Also refers to the base 2 numbering system

bit: A penary digit

booti The process of loading a language or application

program into the computer & memory as #n when you start up
Logo

buffon An area of memory tor temporary storage or data,

used when transferring data from one device to another. Buffer

usually refers 10 an area reserved for an input/output operation,

into which daia is read or tfom which data is wntten

bugt An error in a program

byte: Eight bits

call: To bnng a computer program, a procedure, or a

subpvoceduie mio effect.

Glossary

character: A letter digit, or other symbol thai is used as part

of the organization, control, or representation ol data.

command: A Logo procedure* either a primitive or one that

you define, mat has no output CLEARSCflEEN, FORWARD,
and PRINT are examples of commands See operation

conditional: A statement that causes Logo to carry out

different instructions, depending on whether a condition ts met.

cursor A movable marker thai is used to indicate a position

on the display screen.

debug: To find and eliminate mistakes in a program

default: A value or option that is provided by the program

when none is specified.

device: Anything attached to the computer, such as a printer,

video display, or disk drive

dlrectoryi A tabte on a disk of the names of all the fries on
that disk, along with information that tells ProDOS where to find

the files on the disk.

•choi To reflect received data to the sender. For example,

keys pressed on the keyboard are usually echoed as characters

displayed on the set eon

edit: To enter, modify, or delete data.

adit buffer: The portion of the computer's memory mat

contains all the text mat t$ in the Logo Editor.

element: A member of a set. tn particular, an rtem in a series

empty Hat: A list mat has no elements You write the empty

list as ||

empty word: A word that has no characters You write the

empty word as *

erase: To remove information permanently from either the

workspace or a file.

execute: To perform an instruction or a computer program.

file: An organized collection of Information that can be
permanently stored tor specific purposes*

format: The particular arrangement or layout of data on a

data medium, such as the screen or a disk.

Glossary

garbage collections Cleaning the computer s memory lo

make more space available for storage

global variable: A variable that Is always in me workspace,
such as a variable you create with the MAKE primitive See
local variable

Infix notation: A way of expressing an anthmatic operation

where the operation symbol is placed between the two
numerical Inputs. See prefix notation

input: The information that a Logo primitive or procedure

needs to begm execution.

instruction: in a programming language, any meaningful

expression that specifies one command and its inputs.

integer: A positive or negative number that does not contain

any fractional parts.

interactive: A program that creates a dialogue between the

computer and the user.

Kt When refernng to storage capacity, two to the tenth power
or 1024 in decimal notation

list] A collection of Logo objects, a sequence of words or lists

that begins and ends with brackets.

literal word: An explicit representation of a value, especially

the value ol a word or list, A literal word is preceded by the

Quotation mark character (").

local variable: A variable that eaisls only when a procedure

(s bemg executed. See global variable

locillSRi ARy 5133 IB WfttER 0*113 fifty B8 Slof&a

logical operation: A pred'caie whose input must be either

TRUE Of FALSE.

mmit A word used as a container for a value in the

workspace

nodet A drvis*on of your workspace Each node is five bytes

k>ng.

object: A word or a Hst.

operation: A Logo procedure* either a primitive or one that

you define, that has some kind of output. SUM ONLINE. POS
are examples of operations See command

Glossary

output: The Information that a Logo primitive or procedure

gives to another primitive or procedure.

parse: The process by which phrases arc associated with the

component names at the grammar that generated the stnng. In

Logo, to make sense out of a Logo line

pathname: The name that indicates the location of a hie on a

dish A pathname consists of a device name, a subdirectory

name or names, and the name of the die itself.

picture clement (PIXEL): A graphics potnt Also, the bits

thai contain the information for mat point

predicate: A procedure that outputs either TflUE or FALSE

prefix: A pathname of a directory or subdirectory that is

automatically placed m front of a filename that does not begin

with a slash.

prefix notation; A way of expressing an arithmetic operation

where the operation symbol or primitive Is placed before the

numerical inputs See Infix notation

primitive: A procedure that <s buirt mlo Logo

procedure: A single instruction or a sequence of instructions

to Logo, which has a name and can be permanently stored

procedure call: A request to execute a named procedure

You calf a procedure either from the top levef or from wrthtn

another procedure

ProDOSi The Apple He and Apple tic operating system under

when Logo runs.

program: A set of procedures that work together

prompt: A question the computer asks or a signal it displays

when 11 wants you lo supply Information

properly Hat: A list consisting ot an even number of

elements Each pair of elements consists of a property {such as
ID) and its value, a word or list (such as Robin}

read: To input data into a device so that you can have access

to it

real number Any positive or negative decimal number

Q ossanj

recursive procedure: A procedure (hat calls itself as a

subprocedure Tor example:

TO FLIP

FLIP
END

scientific notation: The expression ol numbers ustng on
exponent.

scroll: To move a« or pan of the display image vertically or

horizontally so that new data appears ar one edge as o*d data

disappears at the opposite edge.

stack: A method of temporanly storing data so that the last

item stored is the first Item to be processed

storage: A device, or pan of a device, that can retain data

string: A sequence of characters.

subdirectory: A group of logically related files on the same
disk.

subprocedure: A procedure used in the definition of another

procedure. For example:

TO A
a
END

A cans 8 so B is a subprocedure of A

superprocedure: A procedure that calls another procedure
For ecample

.

TO A
B
END

A calls B so A is a superprocedure of B.

syntax: The rules governing the structure of a language

top level: The mode in which commands can be executed
directty without being embedded in a program

truncate: To remove the ending elements from a word. For a

number, to remove the fractional part

Ian

turtle: The shape on the screen that represents the pen Logo
uses to draw unes.

value: The contents of a variable.

variable: A container that hotels a value and has a name*

volume: A lormatted disk The volume name is also the name
of the top level directory.

word: A series of characters treated as a unit

workspace: The part of the computer's memory that holds

vanables t procedures, and properties only as long as the

computer is turned on.

write: To record data on a data medium.

Glossary

Cast of Characters

' (asterisk) 120

|| (brackets) 13, 66
(colon) 14, 15

/ (division s*gn) 121

SSTEP 152

SUNSTEP 152
- (equal sign) 122

|
(e<ciamabon mark) 17. 27

^> (greater man s*gn) 122

< (less than sign) 121

- (plus sign) 119

(minus sign) 119

(quotation mark) 13

parsing of 277

A

ABS procedure 120. 131, 257

accessing files 192

addition 106

with SUM operation 117

AGE procedure 168

ALLOPEN operation 212
AND operation 158

ANNOUNCE procedure 79
ANYBASE TO ANYBASE
procedure 257

ARCCOS procedure 106

AflCL procedure 256

ARCR proceduro 256
ARCSIN procedure 108

ARCTAN operation 108

arctangent 108

arithmetic operations

addition 106, 117

descriptions of 105

division 106, 112, 113

evaluation of 107

tnllx-form 118-122

multiplication 106, 112. 120

prelu-form 107-118

results or 106

subtraction 106, 109

ASCII codes 83, 281

ASCII operation 81

ASKINFO procedure 222

aspect ratio 243

assembly language 238
asterisk (*) 120

AUXDEPOSIT command 241

AUXEXAMINE operation 242
auMihary memory bank 238

a

BACK command 36
background color 51. 54

BACKGROUND (BG) operation

54

Inite*

BEFOHEP operation S3

8F (BUTFIRST) operation

69-70

BG (BACKGROUND) operation

54

BK (BACK) command 36
BL (BUTLAST) operation 71

BLOAO command 242

blacks 190

brackets t)|)13. 68
parsing ol 277

BSAVE command 242
butter 26

edit 28. 241

file 241

graphics 241

kill 27
BURY command 162

bury facility 175

BURYALL command 1B3
BURYNAME command 183
BUTFIRST (BF) operation

69-70

BUTLAST (BL) operation 71

BUTTONP operation 163

BYE procedure 212

C
C TO N procedure 258
CALCULATOR procedure 138

CALL command 242

CANCEL procedure 149

CATALOG command 194

CATCH command 133 136,

140

CHAR operation 83
characters

ASCII codes tor 281

deleting 6

reading 165. 166

CHECKPOS procedure 220
n.',vit«u ptuceuurtj t io

CHECKWRITE procedure 221

CIRCLE procedure 244

CiRCLEL procedure 256
CIRCLER procedure 256
CLEAN command 47
cleaning the workspace
182-185

CLEARSCREEN <CS)

command 37
CLEARTEXT (CT(command
60

CLOSE command 21

2

CL05EALL command 213
CO command 130

colon O 14, 15

cotor

background 51 , 54
pen 53, 55

COMFORT procedure 158

commands and operations 14

COMMENT procedure 71, 261

condit>onals 125. 126-129

CONTENTS operation 245
continuation lines 17. 27
control characters 144

interrupting procedures with

144

changing screen use with 63
CONTROL-L 63
CONTROL-S 64

CONTROL-T 64
CONTROL-W 144

CONTROL-Z 144

CONVERT procedure 84, 257
coordinates, x and y 41. 45
COPY procedure 198. 264

COPYDEF command 147-148

COS operation 108

cosine 108

COUNT operation 85

COUNTDOWN procedure T32.

137
COUNTUP procedure 142

CREATEDIR command 195

r.rl—

CS ICLEARSCREEN)
command 37

CT (CLEARTEXT) command
60

CUBE procedure 112

CURSOR operation GO
cursor movement 5. 29

D

D6 procedure 113

data files 169

closing 212. 213
opening 211, 214

leading from 211

sample project 221

working with 211-221

writing lo 211

debugging programs 140-144

DEC.TCXANYBASE procedure

257

DECIDE procedure 126

DECIMALP procedure 158

decimals 105

DECTOHEX procedure 258
DEFINE command 147 148

DEFINEP operation 147. ISO

defining procedure 11. 2 1*22

deleting

characters 6

hues 6
text 30

delimiters, parsing ol 275

277
DEPOSIT command 242

devices) 205
closing 212 213
opening 211 214

DICE procedure 115

DIFFERENCE operation 109

directory 190

listing 194

prefm 193

disk(s)

formatting 190

organization 190

volume directory 190

volume name 190

DISTANCE procedure 117

division 106

with INTQUOTIENT
operation 112

with QUOTIENT operation

113
division sign (S) 121

DIVISORP procedure 114. 258
DOIT procedure 135

DOFTl procedure 135

SSTEP procedure 152
SUNSTEP procedure 152

DOT command 47
DOTP operation 54
DRIBBLE command 209
dribble tiles 189

working with 209-211

DRIVE procedure 262
DUMP procedure 210

E

ED (EDIT command 28
edit buffer 26. 28, 196. 241

EDIT command 28
EDITFILE command 31. 196

editing in the Editor 29
editing procedures 2fl

Editor 25
editing in the 29
getting out of 31

help 4

how It works 26
keystrokes

cursor movement 29
deleting and inserting text

30
starting up 28, 31

typing m the 29

Incto*

EDN command 31, 66
EDNS command 31 97

EFRAC procedure 260
ELLIPSE procedure 244

empty list 59
empty word 66
EMPTYP operation B5
END (special word) 21, 22
equal signal 122
EQUALP operation 67. 106

equipment you must have 3

EH (ERASE) command 181

EflALL command 181

ERASE (ER) command 161

ERASEFILE (ERF) command
196

erasing Irom me workspace
160-162

ERF (ERASEFILE) command
196

ERN command 181

ERNS command 181

ERPROPS command 230
ERPS command 181

error messages 13S. 251

ERROR operation 135

EVENP procedure 114

.EXAMINE operation 243

examining words and tats 81

exclamation mark (I) 17. 27

execufng procedures 12

EXP procedure 260

F
FACTORIAL procedure 121

FALSE 126
FD (FORWARD) command 37
FENCE command 46

189

accessing 192

closing 212.213
description or 189

erasing 196

listing 194

opening 211, 214

reading Irom 211

saving 206

With SAVEL 207
startup 267

types 189

writing to 211

tile buffers 241

F1LELEN operation 214

filename 193

changing 199

FILER operation 196

FilERL procedure 21 a

FILL command 48
FlLLAT procedure 49
FILLIN procedure 214

FlNDBlRTH procedure 231
FINDINFO procedure 224

FINDTEL procedure 224

FIRST operation 69, 71

FLAVORCHART procedure 61

FLIP procedure 14

flowol control 125-126

FOREVER procedure 139. 261

FORM operaton 109

formatting disks 190

FORWARD (FO) command 37

FPUT operation 75
t 76

frequencies, noie 171

FROM HOME procedure 117

FS (FULLSCREEN) command
61

FULLSCREEN (FS) command
61

G
garbage collection 177

GET USER procedure 167

GETLINES procedure 263

318 Indo*

global variables 15. 95
GO command 135

GOODVEE procedure 44
GPROP operaUon 230
graphics, printing 4

graphics Duffer 241

graphics screen 35. 59
erasing with CLEAN 47

erasing with CLEARSCREEN
37

loading pictures into 208
printing the 208
saving the 208

greater than sign (>) 122

GREET 13. 16. 22 t 98. 177,

178

H
hailing procedures 126

HASOOTP procedure ISA

HEADING operation 43

harp feature 4. 6

tietp screen, loading 197

HEXTODEC procedure 258
HIDETURTLE (MT) command
38

HOME command 38
HT (HIDETURTLE) command
38

/

IF (command or operation) 126

IFFALSE (IFF) command 127

IFTRUE (IFTJ command 128

IGNORE procedure 152

INC procedure 102

infu notation 105

intiM procedures 276

infix-form operations 1 18*122

parsing of 276

INP procedure 87

input word 7

Inputs to procedures 13

INSERT procedures?. 261

inserting tent 30
instructions

repeating 133

transferring conuol 133

INT operation 111

integers 105

INTERPRET procedure 165

interrupting procedures

129-133

fNTP procedure 111

INTPWR procedure 259
INTGUOTIENT operation 112

INVERSE procedure 281

inverse langenl 108

ITEM operation 73

KEVP operation 164

keystrokes used at top level 5

kill Duffer 27

L

LABEL command 137

LAST operation 73
LATIN procedure 80

LEARN program 148

LEFT (LT) command 38
LENGTH procedure 177. 178

less than sign {<) 121

hnes

continuation 17

detetmg 6

paring 275

reading 167

retrieving 8

list(s)

breaking into p*eceg 69
description of Gfi

empty 69
examining 61

property 229
putting together 75
reading 167

UST operation 75. 76

LISTEN procedure 263
LISTFILE procedure 217
LISTP operation 86
LN procedure 25B
LN1 procedure 259
LOAD command 206
LOAOHELP command 197

LOADPIC command 208
LOCAL command 98
local variables 16. 95
LOG procedure 258
logical operations 157

Logo Editor See Editor

Logo line 17

lowercase lotto's 5
LOWERCASE opetalion 90
LPUT operation 75, 77
LT (LEFT) command 38

M
main memory bank 238
MAKE command 15

t 99
MAP procedure 138, 261

MARK.TWAIN procedure 130

malh operations, evaluated by
Logo 107

MEMBER operation 74

MEMBERP operation 88
memory

auxiliary bank 238
mam bank 238

memory space, how to save

272
MESSAGE procedure 168

messages, error 135, 251

minus sign H 119

parsing of 278

MODIFY procedure 225
MODINFO procedure 226
MOUNTAINS procedure 160

MOVE procedure 171

MOVECURSOR procedure 62
moving ttie cursor 5

P
29-30

multiphcaioi t06

with the asterisk n 120

with PRODUCT operation

112

music, making with TOOT 17

1

N

NTO.C procedure 258

NAME command 100

NAMEIT procedure 264

NAMEP operation 101

NEAR procedure 120
NEWENTRY procedure 78
node space 241

nodes, allocating 271

NODES operation 1 76
NODRiBBLE command 210
NOT operation 159
notation

infbl 105

prefix 105
scientific 106. 110

note frequencies 171

numbers)
square root 1 17

types (decimal and integer)

105

NUMBRP operation 89

r-^jy

oOfect 15

ONLINE Operation 197

OP <OUTPUT> command 130
OPEN command 2t4
ESC 143

opening files 211

operations, logical 157
operations and commands 14

OR operaiion 160
organizing the workspace
182-185

OUTPUT (OP) command 130

P

paddle 163

PADDLE operation 163
parentheses 107 122

parsing of 277
PARSE operation 78

parsing 275-278

pathname 193

changing 199
PAUSE (command or

operation) 131

pausing in procedures 126
PO (PENDOWN) command 49
PE (PENERASE) command 50
pen color 53. 55
PEN operation 54
pen state 47-53. 54*55

PENCOLOR (PC) operation 55
PENDOWN (PO) command 49
PENERASE (PE) command 50
PENREVERSE (PX) command
50

PENUP (PU) command 51

PHONEUST procedure 231
plciure Mefs) 189

loading 208
printing 4, 208
saving the 208
working with 207-208

PIG procedure 80, Bl

PLIST operation 23t

plus sign (1)119
PO command 1 77

POALL command 178

POFILE command 198
POLY procedure 26, 39, 151
178, 179

r
256

POLYSPt procedure 176
PON command 178

PONS command 179

POPS command 179

POS operation 43
POT command 180

POTS command 1 60
PPROP command 232
PPS command 232
PR IPRINT) command 169

predicate)*) 728, 157

prefix 193

directory 193

notation 105

selling 199

PREFIX operation 198

prefix-form operations 107

PRIMARYP procedure 91

PRIMITIVE? procedure 147.

150

primitives 4, 1

1

PRINT (PR) command 169
print texl and graphics 4

PRINTBACK procedure 74

PR1NTDOWN procedure 72
printers 4

printing variables 178

printing with the DUMP
procedure 210

PRINTMESSAGES 27
PRINTPIC command 208

321

proceduios 1

1

Durymg i82. 1 83

debugging 140*144

defining 11, 21

editing 28
erasing 161, 182

executing 12

halting 126

input to 1

3

interrupting 126. 129-133.

143

with CONTROL-W 144
With CONTROL-Z 144

pausing in 126

pnnting definitions of 177,

178
printing idle lines of 160

punctuation in 13

saving with SAVE 206
saving with SAVEL 207

types 14

unburymg 184

ProDOS 190

PRODUCT operation 112
program tiles 189

working with 206-207
programs, debugging 140-144

prompt character 21

PROMPT procedure 171

properties

erasing 230
printing 232
removing 233
saving with SAVE 206
saving with SAVEL 207

property list 229

erasing 230
printing 232

punctuation

brackets 13. 68
colon 14, 15
exclamation mark 17, 27
in procedures 13

parsmg ol 275*278

quotation marks 13

slash 191

PWR procedure 259

PWRLOOP procedure 259
PX (PENREVERSE1 command
50

O
QUIT command 245

QUIZ procedure 127

OU1Z2 procedure 128

quotation mark 13

parsing of 277
QUOTIENT operotw 113

R
RANDOM operation 113

RANPICK procedure 85
raw. aspect 243

read position, selling 218

READCHAR operation 165

READCHARS operation 166

READER operation 215

reader, setting 217

READFILE procedure 215
READLINES procedure 149

READUST (RL) operation 167

READNUM procedure t34

READPOS operation 216
READWORD (RWt operation

167

REALWORDP procedure 159

r lex

recursion 12

RECYCLE command 177

REMAINDER operation 114

removing a cnaraclor 6

removing a hno 6

REMPROP command 233
RENAME command 199

REPEAT command 137

repetition 126, 133

REPORT procedure 132

REPRINT procedure 169

RERANDOM command 115

removing a line 6
REVPRINT procedure 86
RIGHT (RT) command 39
ROOT procedure 259

ROUND operation 116

RT (RIGHT) command 39
RUN (command or operation)

138

RUNSTORE procedure 263

S

safe SQUARE, procedure 139

SAFESQUARE procedure 136

sample protect using the data

tile 221

SAVE command 206
SAVElNFO procedure 222
SAVEL command 207

SAVEPIC command 208

saving space 272
scientific notation 106, 110

screen

changing use of 59
dimensions 59
graphics 35. 59
text 35, 59

SCRUNCH operaiion 243

SE (SENTENCE) operation 75
SECRETCOOE procedure 61

SECRETCODELET procedure

62
SENGEN procedure 176

SENTENCE (SE) operation 75,

78
SETBG command 51

SETCRUNCH command 243

SETCURSOR command 61

SETH (SETHEADING)
command 40

SETHEAD1NG (5ETH)
command 40

SETPC command 53

SETPOS command 40

SETPREFIX command 199

SETREAD command 217

SETREADPOS command 218

SETWIDTH command 62
SETWRITE command 218
SETWRITEPOS command 219

SETX command 41

SETY command 41

SHORTQUIZ procedure 129

SHOW command 170

SHOWINPUTS procedure 153

SHOWUNES procedure 153

SHOWNP operation 44

SHOWTURTLE (ST) command
42

SIN operation 116

SIREN procedure 171

slash (/) 191

SLITHER suPprocedure 134

SNAKE procedure 134

SORT 261. 261

SORT procedure 82
sounds, making w»th TOOT

171

space, saving 272

SPt procedure 40, 178

SPUTSCREEN (SS) command
63

SO procedure 117. 176

SORT operation 117

SQUARE procedure 37, 139.

140 148, 151

square root 117

Index

SQUARE WITH TAIL

procedure 151

SS (SPLITSCREEN) command
63

staring up the Editor 31

STARTUP file, creating 267
STARTUP variable 26a
STEER procedure 165

SSTEP procedure 152

STEP command 14!

STEPPER procedure !52

STOP command 132
STORE procedure 213, 216.

264

Subdirectories 191

creating 192. 195

eroslny 192

listing 194

prefix 193
5Ut>proceduro 12, 125

subtraction 106

witti DIFFERENCE operation

109

SUFFIX procedure BO
SUM operation 117
supefprocedure 12, 125

SUPERSORT procedure 82

F

TAB procedure 60
TALK procedure 66
TAN procedure 109
tangent, inverse 108

TEST command 128

TESTIT procedure 275
te*t 59

deleting 30
inserting 30
printing 4

TEXT operation 147, 151

text screen 35. 59
driDblpng from 209

TEXT SCREEN (TS) command
63

THING operation 102

THROW command 133. 136,

140

lifle uncim 11

printing 160. 180

TO command 21

TOOT command 171

lop level t1

getting help at 4

keystrokes for use at 5

TOWARDS operation 44

TRACE command 141

transferring control 133

TRIANGLE procedure 70. 141,

154

TRIANGULATE procedure 176

TRUE (predicate) 126

TRYAGAIN procedure 264

TS (TEXTSCREEN) command
63

TURN procedure 165

turtle graphics 35-55

TYPE command 170

typing in tne Editor 29

typing uppercase and

lowercase letters 5

U

UNBURY command 1B4

UNBURYALL command 184

UNBURYNAME command 185

SUNSTEP procedure 152

UNSTEP command »43

UNTRACE command 143

uppercase letters 5
UPPERCASE operation 91

Index

V

value 95
of variable 176 179

variables) 14. 15-16

assigning values to 15

creating 95
with MAKE 99
with NAME 100

description ol 95
editing with EON 96
editing with EONS 97
erasing TBI

global 16, 95
local 16. 95
names
burying 183

punting 179

unDurying 164 165

saving with SAVE 206
saving with SAVEL 207

STARTUP 268

types i6
r
95

value. p*immg 178 T
179

VEE procedure 44

volume directory 190

volume names 190

listing 197

VOWELP procedure B9

W
WAIT command 132

WALK procedure 131

WARMWELCOME procedure

12
WEATHER procedure 100

WELCOME procedure 269
WHICH procedure 130

WHILE procedure 138. 262
WIDTH operation 63
WINDOW command 53

WIPEOUT procedure 263
word, empty 68
word delimiters 68
WORD operation 75. 80
WORDP operation 90, 159

words
breaking into pieces 69
description of 67
changing the caso ot 90

examining 81

putting together 75
workspace
cleaning 162-185

description ot 175

erasing from 180-182

organizing 182-185

printing from 177-180

saving with SAVE 206
saving with SAVEL 207

WRAP command 53
write pos<tion, setting 219
WRITEINFO procedure 222

WRITEPOS operation 220
wnter. setting 218
WRITER operation 221

X
x-y coordinates 41. 45. 46

XCOR operation 45

XYZZY procedure 165

K Z
y coordinate 41,45.46

YCOR operation 46

YESNO procedure 98
YESP procedure 91

inae*

z} a ? 9 > { I

o a
1

1

!
s

I

zz;
> > >

fn R1 m

HI
n

u frt

if

m«J *i U SA

— cippkz computer
• 20(26Maw* Ar*rH>e

|4QB>BQS-10n

